跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 23:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張嘉玲
研究生(外文):Chia-Ling Chang
論文名稱:一、來自TRIM 突變庫水稻不稔實突變株sstl之研究二、水稻黃斑駁病毒RYMV 中P1蛋白感染寄主的作用功能
論文名稱(外文):I. Studies of a Rice Sterile Mutant sstl from Taiwan Rice Insertional Mutants (TRIM) CollectionII. Multifunctional Roles of Rice Yellow Mottle Virus (RYMV) P1 Protein in Host Infection
指導教授:張孟基邢禹依邢禹依引用關係
指導教授(外文):Florence VIGNOLS
口試委員:Florence VIGNOLS葉信宏黃明德洪傳揚蔡育彰
口試日期:2019-07-30
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:150
中文關鍵詞:花藥發育小孢子轉錄體學分析花粉不稔實RYMVP1寄主防禦複製運移
DOI:10.6342/NTU201903647
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水稻是世界上主要的糧食作物之一,直到2025年將會有超過39億人口以稻米作為主要食物來源。特別是在亞洲和非洲地區,由於人口的急劇增加,水稻的產量遠遠落後於人口的需要,同時因食品安全的問題與日益嚴重的環境變化,使得調整作物適應氣候變遷,建立永續農業,解決餵養世界人口等成為迫切關注之議題。為此,我們在本論文中提出涵蓋兩個不同主題之研究,希望得以針對來自水稻不稔實突變體,瞭解其不稔實之可能原因。另外亦利用水稻黃斑駁病毒 (RYMV) ,瞭解其病毒P1蛋白在感染寄主的作用功能。

一、來自TRIM突變庫水稻不稔實突變株sstl之研究
水稻未發育的花藥或異常花粉導致雄性不稔實,進而引起產量嚴重銳減。因此了解水稻雄性不育機制是一重要研究課題。我們根據水稻發育中具有不稔實之花穗形態,找出一T-DNA未標記的插入突變體sst1。而在其後代分離族群中,完全不稔實的突變株 (sstl-s) 更是表現出其花粉嚴重缺陷與毫無萌發活力。此外在不稔實sstl-s的花藥轉錄體學分析中也透露,因生物代謝途徑的顯著差異,例如細胞壁代謝、脂質、二級代謝物和澱粉合成相關基因的異常抑制表現,造成sstl-s花藥的形態具有不規則的花粉外壁、沒有花粉內壁結構、花粉中毫無澱粉累積、與花藥中因缺乏黃酮類化合物而導致的白色花藥。此外在sstl-s也觀察到因其小孢子囊的缺陷而導致異常的花藥室和中止小孢子發育。對此,藉由sstl-s我們闡述小孢子發育的重要性與脂質、澱粉和細胞壁合成相關基因的表達有關,進一步了解sstl-s孢子囊的缺失在花藥和功能性小孢子發育中,能關鍵決定花粉的不稔實。

二、水稻黃斑駁病毒RYMV中P1蛋白感染寄主的作用功能
水稻黃斑駁病毒RYMV遍布在非洲各國,對水稻造成嚴重破壞導致水稻產量大幅下降。研究RYMV中的病毒蛋白P1,能使我們更了解病毒感染的機制。P1是一病毒抑制子,屬新型鋅指蛋白,其能藉由氧化還原作用而調節與鋅之結合能力,進而改變其蛋白構造。由於P1在病毒傳播中的作用仍不甚清楚,為此在我們的研究中,將針對P1在病毒複製、運移與抵禦寄主的可能機制進行探討。我們研究指出,具突變的P1病毒RYMV仍可以被複製,但複製能力比正常病毒低。具有突變的P1 RYMV,複製病毒RNA的效率從原本24 hrs會下降至48 hrs,表明功能性P1不僅調節病毒複製,還可能維持病毒RNA的穩定性。此外突變的P1 RYMV在感染水稻植物後,沒有顯示出病毒累積也無病癥,表示P1可能會幫助感染後病毒的傳播,而P1蛋白也顯示位在與細胞內物質分泌相關的胞器內質網上。同時我們也觀察到P1蛋白可在兩個相鄰細胞之間運移傳遞,了解到P1可能具有移動能力。熱誘導轉基因水稻也顯示P1轉錄體在熱處理後,可從下部葉片移動到未經熱處理的上部葉片,這一證據強烈表明P1可能參與病毒的長距離的移動。成功的病毒感染除了病毒本身的致病力,還需由寄主防禦機制來決定。我們的結果顯示具有功能的P1病毒可以通過降低抵禦生物逆境相關基因如PR10A和CPR5的表現,來幫助病毒抵制寄主防禦。此外P1在易受RYMV感染的水稻品種中,也可藉其抑制DCL-like和AGO的表達量來影響寄主RNA靜默途徑,進而使寄主易感病。總結上述結果,我們瞭解病毒P1蛋白作為多功能角色,包含參與病毒複製、運動以及對寄主的反擊之重要性。
Rice (Oryza sativa) is one of the main crops in the world. By 2025, more than 3.9 billion people count rice as daily food energy especially in Asia and Africa. Because of the increased population, the production of rice is still far away behind requirements. Meanwhile, the food safety issue related to feed the world continuously, to adjust crop adaptation in climate change, to establish sustainable agriculture, etc. are urgent to be solved. My study in this thesis will cover two different topics described as followings: First, studies of a rice sterile mutant (semi-sterile; sstl) from the TRIM collection and the second investigation, multifunctional roles of rice yellow mottle virus (RYMV) P1 protein in host infection.

I. Studies of a rice sterile mutant sstl from the TRIM collection
Sterility significantly affects rice production and leads to yield defects. The undeveloped anthers or abnormal pollens represent serious defects in rice male sterility. Therefore, understanding the mechanism of male sterility is an important task. Here, we identified an untagged T-DNA insertion mutant sstl based on its semi-sterile morphology of rice development. We investigated the fully sterile mutants (sstl-s) of sstl segregated progeny showed defective pollens and abnormal anthers. Transcriptomic analysis of sterile sstl-s revealed significant differences in several biosynthesis pathways, such as downregulated cell wall, lipids, secondary metabolism, and starch synthesis. The downregulation of gene expression is consistent with the morphological characterization of sstl-s anthers with irregular exine, absence of intine, lack of starch accumulation in pollen grains and no accumulation of flavonoids in anthers. Moreover, defective microsporangia development led to abnormal anther locule and aborted microspores. The downregulated expression of lipids, starch, and cell wall synthesis-related genes resulted in loss of fertility. In summary, the analysis of sstl-s mutant pointed out the importance of microsporangia in the development of anthers and functional microspores.

II. Multifunctional roles of RYMV P1 protein in host infection
Rice yellow mottle virus (RYMV), a virus spread all over African countries, has caused significant damage to rice plant and resulted in dramatic decrease of yield in Africa. ORF1 of RYMV encodes P1 protein which belongs to a novel zinc finger family with its conformation regulated by redox switches. P1 protein was suggested as suppressor after virus infection; however, the function of P1 in virus transition is still unclear. In the present study, we explored the possible mechanisms of P1 in virus replication rate, movement ability, and suppression of host defense. We showed that mutated P1 RYMV still could replicate but at less replication rate than that of normal RYMV after transfection into rice protoplast. All replication rate with mutated P1 RYMV infection decreased from 24 hrs to 48 hrs after inoculation. This result indicated that functional P1 not only could regulate RYMV replication production but also maintain viral RNA transcription stability. In addition, mutated P1 RYMV showed no virus accumulation after infection into rice plant and none of the infected plant displayed virus accumulation. This indicated P1 could help regulate virus spread after infection. P1 protein co-localized with ER marker suggested this protein might participate in virus spread in the cell. Meanwhile, P1-eGFP fusion protein was transmitted between two adjacent cells and thus illustrating P1 mobility. Heat-inducible transgenic rice also displayed P1 transcript moving from lower leaf to non-heat treated upper leaf after heat treatment. This evidence strongly suggested that P1 RNA could be involved in virus long-distance movement. In additional to virus infection ability, the virulence can also be affected by host defense. Our data suggested functional P1 protein might help virus resist host defense by decreasing the expression of biotic-related genes such as PR10A and CPR5. Moreover, P1 could hijack host silencing pathway through down-regulating DCL-like and AGO expression to make host susceptible. Taken together, these results illustrate that P1 protein may serve as multifunctional roles to participate in virus replication, movement, as well as counterattack.
目錄
前言 1
1.1 水稻的生產和糧食危機 1
1.2 水稻的生殖生長 2
1.3 水稻花穗發育與水稻生物逆境對其生產影響 3
參考文獻 7
第二章 來自TRIM突變庫水稻不稔實突變株sstl之研究 11
2.1 前人研究 11
2.1.1 水稻雄不稔的重要性 11
2.1.2 水稻雄性生殖配子發育 11
2.1.3 台灣水稻突變體資料庫 ( TRIM ) 15
2.1.4 次世代定序與基因高通量分析應用 16
2.2 材料與方法 17
2.2.1 水稻材料和生長條件 17
2.2.2 基因組DNA提取和PCR-based基因型分析 18
2.2.3 花粉活力和發芽分析 18
2.2.4 水稻花藥形態學分析 19
2.2.5 RNA提取和轉錄體學分析 20
2.2.6 基因表達分析 21
2.2.7 水稻全基因組定序製備 21
2.3 結果 22
2.3.1 來自TRIM的不稔實突變水稻 22
2.3.2 sstl-s花粉的缺陷引起不稔實性狀 23
2.3.3 sstl-s的花藥形態 25
2.3.4 sstl-s突變體的轉錄體學分析 27
2.3.5 sstl-s延遲花藥基因表現造成不稔實 29
2.3.6 解序 sstl-s突變體的基因位置 30
2.4 討論 31
2.4.1 體細胞變異導致sstl不稔實性特徵 31
2.4.2 sstl-s的不稔實始於小孢子囊發育早期 33
2.4.3 在sstl-s中受到生物合成途徑的影響造成不稔實 34
2.4.4 sstl-s與雄不稔實外表特徵相關的基因 36
2.4.5 sstl-s的突變與全基因組定序 36
2.5 結論 37
參考文獻 39
第二章表、圖、附表、附圖 47
第三章 水稻黃斑駁病毒RYMV中P1蛋白感染寄主的作用功能 93
3.1 前人研究 93
3.1.1 水稻黃斑駁病毒對水稻的影響 93
3.1.2 病毒感染寄主過程 94
3.1.3 RYMV病毒 95
3.1.4 RYMV P1病毒蛋白 96
3.1.5 P1可能具有病毒多功能性 97
3.2 材料與方法 98
3.2.1 植物材料和生長條件 98
3.2.2 病毒RNA製備 98
3.2.3 檢測病毒積累 99
3.2.4 病毒RNA感染至水稻原生質體 100
3.2.5 受感染之原生質體的病毒複製檢測 100
3.2.6 P1次細胞定位之暫時性表現 101
3.2.7 轉基因水稻的建立 101
3.2.8 誘導型轉殖株之熱處理與dexamethasone處理 102
3.2.9 基因組DNA提取和PCR-based基因型分析 103
3.2.10 RNA提取和防禦基因的基因表達分析 103
3.2.11 P1蛋白質的提取和蛋白質免疫轉印 103
3.3 結果 104
3.3.1 P1影響病毒在宿主中的分布 104
3.3.2 P1能調控且維持病毒複製水平 105
3.3.3 P1 在植物細胞間的運移 106
3.3.4 P1 RNA可能參與長距離運移 107
3.3.5 具有功能性的P1可能會逃避寄主防禦機制 108
3.3.6 P1與寄主防禦之間的相互調控 109
3.4 討論 112
3.4.1 P1調節RYMV複製能力 112
3.4.2 P1可為病毒的移動蛋白 114
3.4.3 P1 RNA是RYMV長距離運移的信號 115
3.4.4 水稻品種間P1與宿主防禦的差異 115
3.4.5 過量表現P1轉基因植物中未能檢測到P1蛋白 117
3.5 結論 118
參考文獻 119
第三章表、圖、附表、附圖 125
第四章 總結 149
第一章參考文獻
Arshad MS, Farooq M, Asch F, Krishna JSV, Prasad PVV, Siddique KHM (2017) Thermal stress impacts reproductive development and grain yield in rice. Plant Physiology and Biochemistry 115:57-72.
Callens C, Tucker MR, Zhang D, Wilson ZA (2018) Dissecting the role of MADS-box genes in monocot floral development and diversity. Journal of Experimental Botany 69:2435-2459.
Gao F, Wang K, Liu Y, Chen Y, Chen P, Shi Z, Luo J, Jiang D, Fan F, Zhu Y, Li S (2015) Blocking miR396 increases rice yield by shaping inflorescence architecture. Nature Plants 2:1-9.
Gurdev S. Khush, Brar DS (2017) Alien introgression in rice. Nucleus. 60:251-261.
Harrop TWR, Ud Din I, Gregis V, Osnato M, Jouannic S, Adam H, Kater MM (2016) Gene expression profiling of reproductive meristem types in early rice inflorescences by laser microdissection. The Plant Journal 86:75-88.
Jin L, Qin Q, Wang Y, Pu Y, Liu L, Wen X, Ji S, Wu J, Wei C, Ding B, Li Y (2016) Rice dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development. PLoS Pathogens 12:e1005847.
Junping Yu JH, Kim YJ, Song M, Yang Z, He Y, Fu R, Luo Z, Hu J, Liang W, Zhang D (2017) Two rice receptor-like kinases maintain male fertility under changing temperatures. Proceedings of the National Academy of Sciences 114:12327-12332.
Konate G and Fargette D (2003) Overview of Rice yellow mottle virus. Plant virology in sub-Saharan Africa. IITA, Ibadan, Nigeria, pp 1-17.
Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiologyogy 41:710-718.
Li H, Liang W, Hu Y, Zhu L, Yin C, Xu J, Dreni L, Kater MM, Zhang D (2011a) Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. The Plant Cell 23:2536-2552.
Li H, Liang W, Yin C, Zhu L, Zhang D (2011b) Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. Plant Physiology 156:263-274.
Lopez-Dee ZP, Wittich P, Enrico PE ME, Rigola D, Del Buono I, Gorla MS, Kater MM, Colombo L (1999) OsMADS13, a novel rice MADS-box gene expressed during ovule development. Developmental Genetics 25:237-244.
Moldenhauer KAK, Gibbons JH (2003) Rice morphology and development. In: Smith CW, Dilday RH (eds) Rice: origin, history, technology, and production. John Wiley & Sons, Inc., Hoboken, NJ, pp 103–127.
Murai K (2013) Homeotic genes and the ABCDE model for floral organ formation in wheat. Plants 2:379-395.
Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705-718.
Nuruzzaman M, Sharoni AM, Satoh K, Karim MR, Harikrishna JA, Shimizu T, Sasaya T, Omura T, Haque MA, Hasan SMZ, Ahmad A, Kikuchi S (2015) NAC transcription factor family genes are differentially expressed in rice during infections with rice dwarf virus, rice black-streaked dwarf virus, rice grassy stunt virus, rice ragged stunt virus, and rice transitory yellowing virus. Frontiers in Plant Science 6:676.
Pandey V and Shukla A (2015) Acclimation and tolerance strategies of rice under drought stress. Rice Science 22:147-161.
Peng S, Tang Q, Zou Y (2009) Current status and challenges of rice production in China. Plant Production Science 12:3-8.
Reinke R, Kim SM, Kim BK (2018) Developing japonica rice introgression lines with multiple resistance genes for brown planthopper, bacterial blight, rice blast, and rice stripe virus using molecular breeding. Molecular Genetics and Genomics 293:1565-1575.
Su CL, Chen WC, Lee AY, Chen CY, Chang YCA, Chao YT, Shih MC (2013) A modified ABCDE model of flowering in orchids based on gene expression profiling studies of the moth orchid Phalaenopsis aphrodite. PLOS ONE 8:e80462.
Tan J, Wang M, Shi Z, Miao X (2018) OsEXPA10 mediates the balance between growth and resistance to biotic stress in rice. Plant Cell Reports 37:993-1002.
Theißen G, Melzer R, Rümpler F (2016) MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. The Company of Biologists 143:3259-3271.
Valarmathi P, Kumar G, Robin S, Manonmani S, Dasgupta I, Rabindran R (2016) Evaluation of virus resistance and agronomic performance of rice cultivar ASD 16 after transfer of transgene against Rice tungro bacilliform virus by backcross breeding. Virus Genes 52:521-529.
Yan Li, Xuemei Li, Debao Fu, Wu C (2018) Panicle Morphology Mutant 1 (PMM1) determines the inflorescence architecture of rice by controlling brassinosteroid biosynthesis. BMC Plant Biology 18:348.
Yun D, Liang W, Dreni L, Yin C, Zhou Z, Kater MM, Zhang D (2013) OsMADS16 Genetically Interacts with OsMADS3 and OsMADS58 in Specifying Floral Patterning in Rice. Molecular Plant 6:743-756.

第二章參考文獻
Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology 30:174-178.
An X, Dong Z, Tian Y, Xie K, Wu S, Zhu T, Zhang D, Zhou Y, Niu C, Ma B, Hou Q, Bao J, Zhang S, Li Z, Wang Y, Yan T, Sun X, Zhang Y, Li J, Wan X (2019) ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybrid breeding in maize. Molecular Plant 12:343-359.
Anderson GH, Alvarez NDG, Gilman C, Jeffares DC, Trainor VCW, Hanson MR, Veit B (2004) Diversification of genes encoding Mei2-Like RNA binding proteins in plants. Plant Molecular Biology 54:653-670.
Caffall KH and Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research 344:1879-1900.
Canales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Current Biology 12:1718-1727.
Chang Z, Jin M, Yan W, Chen H, Qiu S, Fu S, Xia J, Liu Y, Chen Z, Wu J, Tang X (2018) The ATP-binding cassette (ABC) transporter OsABCG3 is essential for pollen development in rice. Rice 11:58
Chao LM, Liu YQ, Chen DY, Xue XY, Mao YB, Chen XY (2017) Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage. Molecular Plant 10:735-748.
Chen X, Zhang H, Sun H, Luo H, Zhao L, Dong Z, Yan S, Zhao C, Liu R, Xu C, Li S, Chen H, Jin W (2017) IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiology 173:307-325.
Choi H, Jin JY, Choi S, Hwang JU, Kim YY, Suh MC, Lee Y (2011) An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. The Plant Journal 65:181-193.
Daku RM, Rabbi F, Buttigieg J, Coulson IM, Horne D, Martens G, Ashton NW, Suh DY (2016) PpASCL, the Physcomitrella patens anther-specific chalcone synthase-like enzyme implicated in sporopollenin biosynthesis, is needed for integrity of the moss spore wall and spore viability. PLoS ONE 11:e0146817.
Das G, Patra JK, Baek KH (2017) Insight into MAS: A molecular tool for development of stress resistant and quality of rice through gene stacking. Frontiers in Plant Science 8:985.
Deroles SC and Gardner RC (1988) Analysis of the T-DNA structure in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Molecular Biology 11:365-377.
Droc G, An G, Hsing YI, Hirochika H, Pereira A, Undaresan CS, Han CD, Upadhyaya N, Ramachandran S, Comai L, Leung H, Guiderdoni E (2013) Mutant resources for the functional analysis of the rice genome. In: R Wing and Q Zhang (eds) Genetics and Genomics of Rice. Springer, Berlin, 5:81-115.
El-Kereamy A, Bi YM, Ranathunge K, Beatty PH, Good AG, Rothstein SJ (2012) The Rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLOS ONE 7:e52030.
Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi H, Uemura A, Kanzaki E, Kosugi S, Yoshida K, Cano L, Kamoun S, Terauchi R (2013) MutMap+: Genetic mapping and mutant identification without crossing in rice. PLoS ONE 8:e68529.
Gao Y, Xu H, Shen Y, Wang J (2013) Transcriptomic analysis of rice (Oryza sativa) endosperm using the RNA-Seq technique. Plant Molecular Biology 81:363-378.
Guo C, Ge X, Ma H (2013) The rice OsDIL gene plays a role in drought tolerance at vegetative and reproductive stages. Plant Molecular Biology 82:239-253.
Gutiérrez-Luna FM, Hernández-Domínguez EE, Valencia-Turcotte LG, Rodríguez-Sotres R (2018) Review: “Pyrophosphate and pyrophosphatases in plants, their involvement in stress responses and their possible relationship to secondary metabolism”. Plant Science 267:11-19.
Han B and Huang X (2013) Sequencing-based genome-wide association study in rice. Current Opinion in Plant Biology 16:133-138.
Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends in Plant Science 14:125-132.
Hong L, Tang D, Zhu K, Wang K, Li M, Cheng Z (2012) Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin. Plant Cell 24:577-588.
Huang J, Zhang T, Linstroth L, Tillman Z, Otegui MS, Owen HA, Zhao D (2016) Control of anther cell differentiation by the small protein ligand TPD1 and its receptor EMS1 in Arabidopsis. PLoS Genet 12(8): e1006147.
Huang MD, Wei FJ, Wu CC, Hsing YI, Huang AH (2009) Analyses of advanced rice anther transcriptomes reveal global tapetum secretory functions and potential proteins for lipid exine formation. Plant Physiology 149:694-707.
Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153-166.
Ji R, Wang H, Xin X, Peng S, Hur Y, Li Z, Feng H (2017) BrEXL6, a GDSL lipase gene of Brassica rapa, functions in pollen development. Biologia Plantarum 61:685-692.
Jung KH, Han MJ, Lee DY, Lee YS, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim YW, Hwang I, An G (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. The Plant Cell 18:3015-3032.
Kaur J, Sebastian J, Siddiqi I (2006) The Arabidopsis-mei2-Like genes play a role in meiosis and vegetative growth in Arabidopsis. The Plant Cell 18:545-559.
Kelliher T, Egger RL, Zhang H, Walbot V (2014) Unresolved issues in pre-meiotic anther development. Frontiers in Plant Science 5:1-9.
Ko SS, Li MJ, Ku SB, Ho YC, Lin YJ, Chuang MH, Hsing HX, Lien YC, Yang HT, Chang HC, Chan MT (2014) The bHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in rice. The Plant Cell 26:2486-2504.
Lee SK, Eom JS, Hwang SK, Shin D, An G, Okita TW, Jeon JS (2016) Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility. Journal of Experimental Botany 67:5557-5569.
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-Lipid Metabolism. In The Arabidopsis Book. American Society of Plant Biologists, Washington 11: e0161.
Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y, Liang W, Zhang D (2010) Cytochrome P450 family member CYP704B2 catalyzes the -hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. The Plant Cell 22:173-190.
Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong J, Wilson ZA, Zhang D (2011) PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiology 156:615-630.
Li H and Zhang D (2010) Biosynthesis of anther cuticle and pollen exine in rice. Plant Signaling & Behavior 5:1121-1123.
Li X, Wu L, Wang J, Sun J, Xia X, Geng X, Wang X, Xu Z, Xu Q (2018) Genome sequencing of rice subspecies and genetic analysis of recombinant lines reveals regional yield- and quality-associated loci. BMC Biology 16:102.
Li Y, Li D, Guo Z, Shi Q, Xiong S, Zhang C, Zhu J, Yang Z (2016) OsACOS12, an orthologue of Arabidopsis acyl-CoA synthetase 5, plays an important role in pollen exine formation and anther development in rice. BMC Plant Biology 16:256.
Liu Z, Bao W, Liang W, Yin J, Zhang D (2010) Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. Journal of Integrative Plant Biology 52:670-678.
Liu Z, Lin S, Shi J, Yu J, Zhu L, Yang X, Zhang D, Liang W (2017) Rice No Pollen 1 (NP 1) is required for anther cuticle formation and pollen exine patterning. The Plant Journal 91:263-277.
Low JZB, Khang TF, Tammi MT (2017) CORNAS: coverage-dependent RNA-Seq analysis of gene expression data without biological replicates. BMC Bioinformatics 18:575.
Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Li W, Huang X, Han B (2010) Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Research 20:1238-1249.
Moon S, Kim SR, Zhao G, Yi J, Yoo Y, Jin P, Lee SW, Jung KH, Zhang D, An G (2013) Rice GLYCOSYLTRANSFERASE1 encodes a glycosyltransferase essential for pollen wall formation. Plant Physiology 161:663-675.
Moon S, Oo MM, Kim B, Koh HJ, Oh SA, Yi G, An G, Park SK, Jung KH (2018) Genome-wide analyses of late pollen-preferred genes conserved in various rice cultivars and functional identification of a gene involved in the key processes of late pollen development. Rice 11:28
Murmu J, Bush MJ, Delong C, Li S, Xu M, Khan M, Malcolmson C, Fobert PR, Zachgo S, Hepworth SR (2010) Arabidopsis basic Leucine-Zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiology 154:1492-1504.
Ning L, Lin Z, Gu J, Gan L, Li Y, Wang H, Miao L, Zhang L, Wang B, Li M (2018) The initial deficiency of protein processing and flavonoids biosynthesis were the main mechanisms for the male sterility induced by SX-1 in Brassica napus. BMC Genomics 19:806.
Peng Y, Hu Y, Mao B, Xiang H, Shao Y, Pan Y, Sheng X, Li Y, Ni X, Xia Y, Zhang G, Yuan L, Quan Z, Zhao B (2016) Genetic analysis for rice grain quality traits in the YVB stable variant line using RAD-seq. Molecular Genetics and Genomics 291:297-307.
Pu CX, Han YF, Zhu S, Song FY, Zhao Y, Wang CY, Zhang YC, Yang Q, Wang J, Bu SL, Sun LJ, Zhang SW, Zhang SQ, Sun DY, Sun Y (2017) The rice receptor-like kinases DWARF AND RUNTISH SPIKELET1 and 2 repress cell death and affect sugar utilization during reproductive development. The Plant Cell 29:70-89.
Quilichini TD, Grienenberger E, Douglas CJ (2015) The biosynthesis, composition and assembly of the outer pollen wall: A tough case to crack. Phytochemistry 113:170-182.
Raghavan V (1988) Anther and Pollen Development in Rice (Oryza sativa). American Journal of Botany 75:183-196.
Ruggiero F and Bedini G (2018) Systematic and morphologic survey of orbicules in allergenic angiosperms. Aerobiologia 34:405-422.
Shen C, Li D, He R, Fang Z, Xia Y, Gao J, Shen H, Cao M (2014) Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice genotypes under cold stress. Journal of Plant Biology. 57:337-348.
Shi J, Cui M, Yang L, Kim YJ, Zhang D (2015) Genetic and biochemical mechanisms of pollen wall development. Trends in Plant Science 20:741-753.
Segami S, Tomoyama T, Sakamoto S, Gunji S, Fukuda M, Kinoshita S, Mitsuda N, Ferjani A, Maeshima M (2018) Vacuolar H+-pyrophosphatase and cytosolic soluble pyrophosphatases cooperatively regulate pyrophosphate levels in Arabidopsis thaliana. The Plant Cell 30:1040-1061.
Sorensen A, Guerineau F, Canales‐Holzeis C, Dickinson H, Scott R (2002) A novel extinction screen in Arabidopsis thaliana identifies mutant plants defective in early microsporangial development. The Plant Journal 29:581-594.
Swain DM, Sahoo RK, Srivastava VK, Tripathy BC, Tuteja R, Tuteja N (2017) Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS. Planta 245:367-383.
Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mitsuoka C, Utsushi H, Natsume S, Kanzaki H, Matsumura H, Saitoh H, Yoshida K, Cano LM, Kamoun S, Terauchi R (2013) MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytologist 200:276-283.
Thangasamy S, Guo CL, Chuang MH, Lai MH, Chen J, Jauh GY (2011) Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytologist 189:869-882.
Thompson EP, Wilkins C, Demidchik V, Davies JM, Glover BJ (2010) An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development. Journal of Experimental Botany 61:439-451.
Walbot V and Egger RL (2016) Pre-meiotic anther development: cell fate specification and differentiation. Annual Review of Plant Biology 67:365-395.
Wang QL, Sun AZ, Chen ST, Chen LS, Guo FQ (2018) SPL6 represses signalling outputs of ER stress in control of panicle cell death in rice. Nature Plants 4:280-288.
Wang Y, Lin YC, So J, Du Y, Lo C (2013) Conserved metabolic steps for sporopollenin precursor formation in tobacco and rice. Physiologia Plantarum 149:13-24.
Wei FJ, Kuang LY, Oung HM, Cheng SY, Wu HP, Huang LT, Tseng YT, Chiou WY, Hsieh FV, Chung CH, Yu SM, Lee LY, Gelvin SB, Hsing YIC (2016a) Somaclonal variation does not preclude using rice transformants for genetic screening. The Plant Journal 85:648-659.
Wei FJ, Tsai YC, Hsu YM, Chen YA, Huang CT, Wu HP, Huang LT, Lai MH, Kuang LY, Lo SF, Yu SM, Lin YR, Hsing YIC (2016b) Lack of genotype and phenotype correlation in a rice t-dna tagged line is likely caused by introgression in the seed source. PLoS ONE 11: e0155768.
Wu HP, Wei FJ, Wu CC, Lo SF, Chen LJ, Fan MJ, Chen S, Wen IC, Yu SM, Ho THD, Lai MH, Hsing YIC (2017) Large-scale phenomics analysis of a T-DNA tagged mutant population. GigaScience 6:1-7.
Xing S and Zachgo S (2008) ROXY1 and ROXY2, two Arabidopsis glutaredoxin genes, are required for anther development. The Plant Journal 53:790-801.
Xu T, Zhang C, Zhou Q, Yang ZN (2016) Pollen wall pattern in Arabidopsis. Science Bulletin 61:832-837.
Yagi K, Tsuruta H, Minami K (1997) Possible options for mitigating methane emission from rice cultivation. Nutrient Cycling in Agroecosystems 49:213-220.
Yang L, Qian X, Chen M, Fei Q, Meyers BC, Liang W, Zhang D (2016) Regulatory role of a receptor-like kinase in specifying anther cell identity. Plant Physiology 171:2085-2100.
Yang T, Wang L, Li C, Liu Y, Zhu S, Qi Y, Liu X, Lin Q, Luan S, Yu F (2015) Receptor protein kinase FERONIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase. Biochemical and Biophysical Research Communications 465:77-82.
Yang X, Li G, Tian Y, Song Y, Liang W, Zhang D (2018) A Rice Glutamyl-tRNA synthetase modulates early anther cell division and patterning. Plant Physiology 177:728-744.
Yang X, Wu D, Shi J, He Y, Pinot F, Grausem B, Yin C, Zhu L, Chen M, Luo Z, Liang W, Zhang D (2014) Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. Journal of Integrative Plant Biology 56:979-994.
Yang Z, Huang D, Tang W, Zheng Y, Liang K, Cutler AJ, Wu W (2013) Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high-throughput sequencing of pooled extremes. PLoS ONE 8:e68433.
Zhai R, Feng Y, Wang H, Zhan X, Shen X, Wu W, Zhang Y, Chen D, Dai G, Yang Z, Cao L, Cheng S (2013) Transcriptome analysis of rice root heterosis by RNA-Seq. BMC Genomics 14:19.
Zhang D, Liang W, Yin C, Zong J, Gu F, Zhang D (2010) OsC6 , encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiology 154:149-162.
Zhang D, Luo X, Zhu L (2011) Cytological analysis and genetic control of rice anther development. Journal of Genetics and Genomics 38:379-390.
Zhang D and Wilson ZA (2009) Stamen specification and anther development in rice. Chinese Science Bulletin 54:2342-2353.
Zhao DZ, Wang GF, Brooke S, Ma H (2002) The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes and Development 16:2021-2031.
Zhang H, Yao H, Chen F, Wang X (2007) Purification and characterization of glutamate decarboxylase from rice germ. Food Chemistry 101:1670-1676.

第三章參考文獻
Alcaide-Loridan C and Jupin I (2012) Ubiquitin and plant viruses, let''s play together! Plant Physiology 160:72-82.
Amari K, Vazquez F, Heinlein M (2012) Manipulation of plant host susceptibility: an emerging role for viral movement proteins? Front Plant Sci 3:1-7.
Anjanappa RB, Mehta D, Okoniewski MJ, Szabelska A, Gruissem W, Vanderschuren H (2018) Molecular insights into cassava brown streak virus susceptibility and resistance by profiling of the early host response. Molecular Plant Pathology. 19:476-489.
Baldrich P and Segundo BS (2016) MicroRNAs in Rice Innate Immunity. Rice 9:6.
Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, Vazquez F, Robertson D, Meins JF , Hohn T, Pooggin MM (2006) Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Research 34:6233-6246.
Bonneau C, Brugidou C, Chen L, Beachy RN, Fauquet C (1998) Expression of the rice yellow mottle virus p1 protein in vitro and in vivo and its involvement in virus spread. Virology 244:79-86.
Brugidou C, Holt C, Yassi MNA, Zhang S, Beachy R, Fauquet C (1995) Synthesis of an infectious full-length cDNA clone of rice yellow mottle virus andmutagenesis of the coat protein. Virology 206:108-115.
Brugidou C, Opalka N, Yeager M, Beachy RN, Fauquet C (2002) Stability of rice yellow mottle virus and cellular compartmentalization during the infection process in Oryza sativa (L.). Virology 297:98-108.
Camborde L, Planchais S, Tournier V, Jakubiec A, Drugeon G, Lacassagne E, Pflieger S, Chenon M, Jupin I (2010) The ubiquitin-proteasome system regulates the accumulation of turnip yellow mosaic virus RNA-dependent RNA Polymerase during viral infection. The Plant Cell 22:3142-3152.
Campbell EA, Greenwell R, Anthony JR, Wang S, Lim L, Das K, Sofia HJ, Donohue TJ, Darst SA (2007) A conserved structural module regulates transcriptional responses to diverse stress signals in bacteria. Molecular Cell 27:793-805.
Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to-cell and long-distance transport of viruses in plants. The Plant Cell 8:1669.
Csorba T, Kontra L, Burgyán J (2015) Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479:85-103.
Deng P, Wu Z, Wang A (2015) The multifunctional protein CI of potyviruses plays interlinked and distinct roles in viral genome replication and intercellular movement. Virology Journal 12:141.
Ding SW and Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413-426.
Drugeon G and Jupin I (2002) Stability in vitro of the 69K movement protein of turnip yellow mosaic virus is regulated by the ubiquitin-mediated proteasome pathway. Journal of General Virology 83:3187-3197.
Gillet FX, Cattoni DI, Petiot-Becard S, Delalande F, Poignavent V, Brizard JP, Bessin Y, Dorsselaer AV, Declerck N, Sanglier-Cianferani S, Brugidou C, Vignols F (2013) The RYMV-encoded viral suppressor of RNA silencing P1 is a zinc-binding protein with redox-dependent flexibility. J Mol Biology 425:2423-2435.
Grangeon R, Jiang J, Wan J, Agbeci M, Zheng H, Laliberte JF (2013) 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection. Front Microbiol 4:351.
Hasiów-Jaroszewska B, Fares MA, Elena SF (2014) Molecular evolution of viral multifunctional proteins: the case of Potyvirus HC-Pro. J Mol Evol 78:75-86.
Hipper C, Brault V, Ziegler-Graff V, Revers F (2013) Viral and cellular factors involved in phloem transport of plant viruses. Front Plant Sci 4:154.
Huang T, Böhlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694-1696.
Incarbone M and Dunoyer P (2013) RNA silencing and its suppression: novel insights from in planta analyses. Trends in Plant Science 18:382-392.
Ioannidou D, Lett JM, Pinel A, Assigbétse K, Brugidou C, Ghesquière A, Nicole M, Fargette D (2000) Responses of Oryza sativa japonica sub-species to infection with rice yellow mottle virus. Physiological and Molecular Plant Pathology 57:177-188.
Jiang J and Laliberté JF (2016) Membrane association for plant virus replication and movement. In: Wang A and Zhou X (eds) Current Research Topics in Plant Virology. Springer International Publishing, Switzerland, pp 67-85.
Jiang J, Patarroyo C, Cabanillas DG, Zheng H, Laliberté JF (2015) The vesicle-forming 6K2 protein of turnip mosaic virus interacts with the COPII coatomer Sec24a for viral systemic infection. Journal of Virology 89:6695-6710.
Ju HJ, Ye CM, Verchot-Lubicz J (2008) Mutational analysis of PVX TGBp3 links subcellular accumulation and protein turnover. Virology 375:103-117.
Kasschau KD and Carrington JC (1995) Requirement for HC-Pro processing during Genome amplification of tobacco etch potyvirus. Virology 209:268-273.
Klein W, Westendorf C, Schmidt A, Conill-Cortés M, Rutz C, Blohs M, Beyermann M, Protze J, Krause G, Krause E, Schülein R (2015) Defining a conformational consensus motif in cotransin-sensitive signal sequences: a proteomic and site-directed mutagenesis study. PLoS ONE 10:e0120886.
Komiya R (2017) Biogenesis of diverse plant phasiRNAs involves an miRNA-trigger and Dicer-processing. Journal of Plant Research 130:17-23.
Konate G and Fargette D (2003) Overview of Rice yellow mottle virus. Plant virology in sub-Saharan Africa. IITA, Ibadan, Nigeria, pp 1-17.
Kouassi NK, N''guessan P, Albar L, Fauquet CM, Brugidou C (2005) distribution and characterization of rice yellow mottle virus: a threat to African farmers. Plant Disease 89:124-133.
Kouassi NK, Chen L, Sire C, Bangratz-Reyser M, Beachy RN, Fauquet CM, Brugidou C (2006) Expression of rice yellow mottle virus coat protein enhances virus infection in transgenic plants. Archives of Virology 151:2111-2122.
Koudamiloro A, Nwilene FE, Togola A, Akogbeto M (2015) Insect vectors of rice yellow mottle virus. Journal of Insects 2015:1-12.
Kovalev N, Pogany J, Nagy PD (2014) Template role of double-stranded RNA in tombusvirus replication. Journal of Virology 88:5638-5651.
Lacombe S, Martine B, Vignols F, Brugidou C (2010) The rice yellow mottle virus P1 protein exhibits dual functions to suppress and activate gene silencing. The Plant Journal 61:371–382.
Laporte C, Vetter G, Loudes AM, Robinson DG, Hillmer S, Stussi-Garaud C, Ritzenthaler C (2003) Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of grapevine fanleaf virus movement protein in tobacco BY-2 cells. The Plant Cell 15:2058-2075.
Lazareva EA, Lezzhov AA, Golyshev SA, Morozov SY, Heinlein M, Solovyev AG (2017) Similarities in intracellular transport of plant viral movement proteins BMB2 and TGB3. Journal of General Virology 98:2379-2391.
Lazarowitz SG (1999) Viral movement proteins as probes for intracellular and intercellular trafficking in plants. The Plant Cell 11:535-548.
Levy A, Dafny-Yelin M, Tzfira T (2008) Attacking the defenders: plant viruses fight back. Trends in Microbiology 16:194-197.
Levy A, Zheng JY, Lazarowitz SG (2015) Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to plasmodesmata for plant virus movement. Current Biology 25:2018-2025.
Lewsey M, Robertson FC, Canto T, Palukaitis P, Carr JP (2007) Selective targeting of miRNA‐regulated plant development by a viral counter‐silencing protein. The Plant Journal 50:240-252.
Li Y, Xiong R, Bernards M, Wang A (2016) Recruitment of Arabidopsis RNA helicase AtRH9 to the viral replication complex by viral replicase to promote turnip mosaic virus replication. Scientific Report 6:30297.
Ling R, Pate AE, Carr JP, Firth AE (2013) An essential fifth coding ORF in the sobemoviruses. Virology 446:397-408.
Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiology 127:1773-1780.
Marathe R, Anandalakshmi R, Smith TH, Pruss GJ, Vance VB (2000) RNA viruses as inducers, suppressors and targets of post-transcriptional gene silencing. Plant Molecular Biology 43:295-306.
Más P and Beachy RN (1999) Replication of tobacco mosaic virus on endoplasmic reticulum and role of the cytoskeleton and virus movement protein in intracellular distribution of viral RNA. The Journal of Cell Biology 147:945-958.
Movahed N, Sun J, Vali H, Laliberte JF, Zheng H (2018) A host ER fusogen is recruited by turnip mosaic virus for maturation of viral replication vesicles. Plant Physiology 179:507-518.
Muthayya S, Sugimoto JD, Montgomery S, Maberly GF (2014) An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences 1324:7-14.
Nam TW, Ziegelhoffer EC, Lemke RAS, Donohue TJ (2013) Proteins needed to activate a transcriptional response to the reactive oxygen species singlet oxygen. mBio 4:e00541-12.
Ndjiondjop MN, Albar L, Fargette D, Fauquet C, Ghesquière A (1999) The genetic basis of high resistance to rice yellow mottle virus (RYMV) in cultivars of two cultivated rice species. Plant Disease 83:931-935.
Ndjiondjop MN, Brugidou C, Zang S, Fargette D, Ghesquiere A, Fauquet C (2001) High resistance to rice yellow mottle virus in two cultivated rice cultivars is correlated with failure of cell to cell movement. Physiological and Molecular Plant Pathology 59:309-316.
Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. The Plant Journal 51:1126-1136.
Ouwerkerk PBF, Kam RJ, Hoge JHC, Meijer AH (2001) Glucocorticoid-inducible gene expression in rice. Planta 213 (3):370-378.
Pinel-Galzi A, Traore O, Sere Y, Hebrard E, Fargette D (2015) The biogeography of viral emergence: rice yellow mottle virus as a case study. Current Opinion in Virology 10:7-13.
Plisson C, Drucker M, Blanc S, German-Retana S, Le Gall O, Thomas D, Bron P (2003) Structural characterization of HC-Pro, a plant virus multifunctional protein. The Journal of Biological Chemistry 278:23753-23761.
Poulicard N, Pinel-Galzi A, Fargette D, Hebrard E (2014) Alternative mutational pathways, outside the VPg, of rice yellow mottle virus to overcome eIF(iso)4G-mediated rice resistance under strong genetic constraints. Journal of General Virology 95:219-224.
Poulicard N, Pinel-Galzi A, Traoré O, Vignols F, Ghesquière A, Konaté G, Hébrard E, Fargette D (2012) Historical contingencies modulate the adaptability of rice yellow mottle virus. PLoS Pathogens 8:e1002482.
Qu F, Ren T, Morris TJ (2003) The coat protein of turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step. Journal of Virology 77:511-522.
Roossinck MJ (2005) Symbiosis versus competition in plant virus evolution. Nature reviews Microbiology 3:917.
Sõmera M, Sarmiento C, Truve E (2015) Overview on sobemoviruses and a proposal for the creation of the family sobemoviridae. Viruses 7:3076-3115.
Sarmiento C, Gomez E, Meier M, Kavanagh TA, Truve E (2007) Cocksfoot mottle virus P1 suppresses RNA silencing in Nicotiana benthamiana and Nicotiana tabacum. Virus Research 123:95-99.
Sasvari Z and Nagy PD (2016) Exploration of plant virus replication inside a surrogate host, Saccharomyces cerevisiae, elucidates complex and conserved mechanisms. In: Wang A., Zhou X. (eds) Current Research Topics in Plant Virology. Springer, Cham, Switzerland, pp 35-65.
Schoelz JE, Angel CA, Nelson RS, Leisner SM (2016) A model for intracellular movement of cauliflower mosaic virus: the concept of the mobile virion factory. Journal of Experimental Botany 67:2039-2048.
Seo JK, Wu J, Lii Y, Li Y, Jin H (2013) Contribution of small RNA pathway components in plant immunity. Molecular Plant Microbe Interaction 26:617-625.
Sereme D, Lacombe S, Konate M, Bangratz M, Pinel-Galzi A, Fargette D, Traore AS, Konate G, Brugidou C (2014) Sites under positive selection modulate the RNA silencing suppressor activity of rice yellow mottle virus movement protein P1. Journal of Genetic Virology 95:213-218.
Shulla A and Randall G (2016) (+) RNA virus replication compartments: a safe home for (most) viral replication. Current Opinion in Microbiology 32:82-88.
Sire C, Bangratz-Reyser M, Fargette D, Brugidou C (2008) Genetic diversity and silencing suppression effects of rice yellow mottle virus and the P1 protein. Virology Journal 5:55.
Sun F, Qi W, Qian X, Wang Q, Yang M, Dong X, Yang J (2012) Investigating the Role of OsPDCD5, a homolog of the mammalian PDCD5, in programmed cell death by inducible expression in rice. Plant Molecular Biology Report 30:87-98.
Sun L, Andika IB, Shen J, Yang D, Chen J (2014) The P2 of wheat yellow mosaic virus rearranges the endoplasmic reticulum and recruits other viral proteins into replication-associated inclusion bodies. Molecular Plant Pathology 15:466-478.
Traoré O, Traoré MD, Fargette D, Konaté G (2006) Rice seedbeds as a source of primary infection by rice yellow mottle virus. European Journal of Plant Pathology 115:181-186.
Wang A (2015) Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annual Review of Phytopathology 53:45-66.
Weinheimer I, Boonrod K, Moser M, Zwiebel M, Fullgrabe M, Krczal G, Wassenegger M (2010) Analysis of an autoproteolytic activity of rice yellow mottle virus silencing suppressor P1. Biological Chemistry 391:271-281.
Wu J, Yang Z, Wang Y, Zheng L, Ye R, Ji Y, Zhao S, Ji S, Liu R, Xu L, Zheng H, Zhou Y, Zhang X, Cao X, Xie L, Wu Z, Qi Y, Li Y (2015) Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. Elife 4:e05733.
Yamada S, Kano A, Tamaoki D, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K (2012) Involvement of OsJAZ8 in Jasmonate-induced resistance to bacterial blight in rice. Plant Cell Physiology 53:2060-2072.
Yassi MNA, Ritzenthaler C, Brugidou C, Fauquet C, Beachy RN (1994) Nucleotide sequence and genome characterization of rice yellow mottle virus RNA. Journal of general Virology 75:249-257
Ye C, Dickman MB, Whitham SA, Payton M, Verchot J (2011) The unfolded protein response is triggered by a plant viral movement protein. Plant Physiology 156:741-755.
Zhang J, Zhang Z, Chukkapalli V, Nchoutmboube JA, Li J, Randall G, Belov GA, Wang
X (2016) Positive-strand RNA viruses stimulate host phosphatidylcholine synthesis at viral replication sites. Proceeding of National Academic Sciences 113:E1064-E1073.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top