跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.185) 您好!臺灣時間:2025/09/09 16:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉家呈
研究生(外文):LIU,CHIA-CHENG
論文名稱:SBA-15接枝乙二胺對二氧化碳吸附之研究
論文名稱(外文):CO2 adsorption using Ethylenediamine graft to SBA-15
指導教授:劉光宇劉光宇引用關係
指導教授(外文):LIU,KUANG-YU
口試委員:魏銘彥江鴻龍
口試委員(外文):WEI,MING-YENCHIANG,HUNG-LUNG
口試日期:2016-01-28
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:100
中文關鍵詞:SBA-15官能化接枝二氧化碳
外文關鍵詞:SBA-15functionalizationgraftcarbon dioxide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:0
以不同合成溫度(70、100及130℃)及反應時間(24、72小時)製備出不同孔徑的SBA-15,將不同孔徑的SBA-15進行官能化,再將官能化後的SBA-15經逐步聚合接枝成丙烯酸甲酯胺基樹枝狀聚合物。探討吸附劑的接枝效率與二氧化碳的吸附效果,改善孔填充的問題。
經BET分析的數據可了解,孔徑隨著水熱合成溫度增加由3.55 nm提高至7.91 nm,再增加反應時間由7.91 nm提高至10.91 nm,但溫度過高或反應時間過長可能會造成孔壁破裂。FT-IR結果顯示2900 cm-1、1500 cm-1、700 cm-1左右多出了SBA-15所沒有的峰值,表示成功將SBA-15官能化。接枝反應後將濾液以滴定法進行胺含量之滴定,70℃-SBA-15 G1至G2的接枝效率由11.67%提高至12.50%,但在G3後有可能是孔填充的問題使得接枝效率降低至10.28%,100℃-SBA-15與70℃-SBA-15情形相同,而130℃-SBA-15與130℃-3D-SBA-15 G1-G3的接枝效率沒有降低的情形發生(130℃-SBA-15:10.30、11.42、11.76%,130℃-3D-SBA-15:9.77、10.82、11.60%),表示改善了孔填充的問題。以固定反應床模擬煙氣(28% CO2與72% N2)於室溫下進行二氧化碳的吸附及吸附劑的再生,實驗數據進行分析比較,130℃-SBA-15/G3吸附量最高 (82.25 mg/g) ,100℃-SBA-15/G2吸附劑經過了五次吸附-脫附循環吸附量為65.80、63.26、61.53、62.71、64.8 mg。
研究發現比表面積和孔徑影響了接枝的效率、可接枝的次數及二氧化碳吸附量。提高水熱溫度與合成時間可有效增加孔徑的大小、提高接枝次數並改善孔填充的問題,達到更高的吸附量,吸附劑的重複再利用性高,可減少處裡二氧化碳的成本。

Different synthetic temperatures (70, 100 and 130℃) and reaction times (24 and 72 hours) are used to make SBA-15 of pore diameters, which is functionalized. The acrylate-based amine dendrimers is grafted by stepwise polymerization the functionalized SBA-15. The grafting efficiency of the absorbent and the absorption effect of carbon dioxide are discussed, and problems such as pore filling are improved.
The data of BET analysis shows that the pore diameter will increase from 3.55 nm to 7.91 nm as the hydrothermal temperature increases, and will also increase from 7.91 nm to 10.91 nm if the reaction time is additionally increased. However, the pore wall may break if the temperature or reaction time is too high or long. The FT-IR result shows the peak value that is not possessed by SBA-15 appears both sides of 2900 cm-1, 1500 cm-1, and 700 cm-1, which indicate SBA-15 is successfully functionalized. After grafting reaction, the amine content of the filtrate is determined by the titration. As for 70℃-SBA-15, the grafting efficiencies of G1 to G2 are increased from 11.67% to 12.50%, but they may decrease to 10.28% due to problems like pore filling after G3. The grafting efficiencies are the same for 100℃-SBA-15 and 70℃-SBA-15, but the grafting efficiencies of G1 to G3 are not decreased as for 130℃-SBA-15 and 130℃-3D-SBA-15 (130℃-SBA-15:10.30,11.42,11.76%,130℃-3D-SBA-15:9.77,10.82,11.60%), which indicate the pore filling is improved. The fixed-bed reactor is used to simulate flue gas by carbon dioxide adsorption at room temperature and the regeneration of adsorbent. The test data shows that the adsorption capacity of 130℃-SBA-15/G3 is maximum (82.25 mg/g), and the cyclic adsorption capacity of 100℃-SBA-15/G2 is respectively 65.80, 63.26, 61.53, 62.71, and 64.8 mg after adsorption and desorption for 5 times.
The study finds that the specific surface area and the pore diameter affect the grafting efficiency, the graftable number and the adsorption capacity of carbon dioxide. The pore diameter and the grafting number can be effectively increased, and the pore filling can be improved by increasing the hydrothermal temperature and the synthetic time. As a result, the adsorption capacity is increased, the reusability of adsorbent is increased, and the cost for treating carbon dioxide is decreased.

摘要 I
Abstract III
誌謝 V
圖目錄 VIII
表目錄 X
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
1-3 研究內容 3
第二章 文獻回顧 5
2-1 二氧化碳捕集技術 5
2-1-1吸附法 5
2-1-2吸收法 8
2-1-3薄膜分離法 10
2-2吸附劑之種類介紹 11
2-3 SBA-15 合成機制 15
2-4 SBA-15表面改質方法介紹 18
2-4-1共結合法 (co-condenstation): 18
2-4-2無水有機溶劑法 (silylation): 18
2-4-3加水有機溶劑法 (coating): 19
2-4-4含浸法(Impregnation method): 19
2-4-5接枝/嫁接到表面法(graft-to method): 19
2-5接枝/嫁接方法 21
2-5-1幅照法 22
2-5-2光化學法 23
2-5-3低溫等離子法 25
2-5-4偶合接枝 26
2-5-5添加接枝共聚物 27
2-6胺與二氧化碳 28
2-6-1 胺的種類 28
2-6-2 各類胺之比較 28
2-6-3 胺與二氧化碳之反應 30
2-7 吸附等溫線 31
2-8文獻總結 33
第三章 實驗設備與方法 35
3-1 實驗試藥 35
3-2 SBA-15之製備方法與接枝 36
3-2-1 SBA-15製備方法 36
3-2-2 SBA-15官能化之方法 38
3-2-3 SBA-15 接枝方法 40
3-3 SBA-15上胺含量之定量(滴定法) 42
3-4固定床反應設備 44
3-5 分析儀器 46
3-6 實驗流程 47
3-6-1 吸附-脫附反應 47
3-6-2 BET測定 50
3-6-3 FTIR 測定 50
第四章 結果與討論 52
4-1BET分析 53
4-2傅立葉轉換紅外光譜(FTIR)分析 63
4-3胺含量分析(滴定) 65
4-4二氧化碳吸附分析 69
4-4-1二氧化碳吸附 69
4-4-2 二氧化碳吸附-脫附循環 79
第五章 結論與建議 81
5-1 結論 81
5-2 建議 82
參考文獻 84
[1]交通部氣象局,全球與台灣溫度分析,2013

[2]Global annual average temperature measured over land and oceans.2014 國家海洋暨大氣總署 ( NOAA )

[3]Intergovernmental Panel on Climate Change.2014聯合國政府間氣候變遷小組(IPCC)


[4]Mirian E. Casco, Manuel Martínez-Escandell, Joaquín Silvestre-Albero, Francisco Rodríguez-Reinoso. ,“Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure”,Carbon. , vol 67,pp 230–235,2014.

[5]Bryce Dutcher, Maohong Fan , , Sheng Cui, Xiao-Dong Shen , Yong Kong,Armistead G. Russell, Patrick McCurdy, Marcus Giotto. , “Characterization and stability of a new, high-capacity amine-functionalized CO2 sorbent”, International Journal of Greenhouse Gas Control. , Vol 18, pp 51–56,2013.

[6]Badger, W.L. and Banchero, J.T. , “Introduction to Chemical Engineering”,McGRAW-HILL Book Company. ,1995.

[7]Chia-Chang Lin , Han-Tsung Lin. , “ Removal of Carbon Dioxide from Indoor Air Using a CrossFlow Rotating Packed Bed”, Energy Procedia. , Vol 37, pp 1187–1193,2013

[8]Zhenqi Niu , Yincheng Guo , Qing Zeng, and Wenyi Lin. , “ Experimental Studies and Rate-Based Process Simulations of CO2 Absorption with Aqueous Ammonia Solutions”, Ind. Eng. Chem. Res. , vol 51 , pp 5309–5319,2012.

[9]K.S.N. Kamarudin, , N. Alias. “Adsorption performance of MCM-41 impregnated with amine for CO2removal”, Fuel Processing Technology. , Vol 106,pp 332–337,2013.

[10]Evan J. Granite, Thomas O'Brien. , “Review of novel methods for carbon dioxide separation from flue and fuel gases”, Fuel Processing Technology. , Vol 86,pp 1423–1434,2005.


[11]IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry. Pure Appl hem.,vol 31,pp 578,1972.

[12]工業污染防治,第111期,2009.

[13]Zhao D Y, Feng J L, Huo Q S. Triblock Copolymer Synthesis of Mesoporous Silica with Periodic 50 to 300 Angstrom Pore [J]. Science, vol 279,pp 548−552,1998.

[14]Grosso D, Balkenende A R, Albouy P A, et al., “Two-dimensional Hexagonal Mesoporous Silica Thin Films Prepared from Block Copolymers: Detailed Characterization and Formation Mechanism [J]. ” ,Chem. Mater., vol 13,pp 1848−1856, 2001.

[15]Dongyuan Zhao, Jianglin Feng, Qisheng Huo, Nicholas Melosh, Glenn H. Fredrickson, Bradley F. Chmelka,Galen D. Stucky. , “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores”, Science. , Vol 279, pp 548-552,1998.

[16]J. S. Beck , J. C. Vartuli , W. J. Roth , M. E. Leonowicz , C. T. Kresge , K. D. Schmitt , C. T. W. Chu , D. H. Olson , E. W. Sheppard. , “A new family of mesoporous molecular sieves prepared with liquid crystal templates”, J. Am. Chem. Soc. ,vol 114, pp 10834–10843,1992.

[17]楊迎輝,鄭名宏, “中孔洞分子篩SBA-15的製備” ,崑山科技大學 環境工程系 學生專題, 2009.

[18]Hoang V T, Huang Q L, Eic M, et al. “Structure and Diffusion Characterization of SBA-15 Materials.” Journal of Langmuir, vol 21,pp 2051−2057, 2005.

[19]ZHOU Li-hui, ZHANG Li-zhong, LIU Hong-lai., “Effect of Crystallization Temperature on Structure and Morphology of Mesoporous SBA-15” , The Chinese Journal of Process Engineering.,vol 6,pp 499-502,2006.

[20]Michał Moritz,Marek Łaniecki.“SBA-15 mesoporous material modified with APTES as the carrier for 2-(3-benzoylphenyl)propionic acid” , Applied Surface Science., Vol 258, pp 7523–7529, 2012.

[21]R. Sanz , G. Calleja , A. Arencibia , E.S. Sanz-Pérez ., “CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15” , Applied Surface Science. , Vol 256, pp 5323–5328, 2010.

[22]Sartori, G., Savage, D. W. , “Sterically Hindered Amine for CO2 Removal from Gases” , Ind. Eng. Chem. Fundam., Vol. 22,pp.239-249,1983.

[23]陳重修, “二氧化碳與二氧化硫整合性控制技術之研究” ,國立台灣大學環境工程研究所碩士論文, 2000.

[24]Soojin Park,Min-Kang Seo. , “Interface Science and Composites”,2011.

[25]Yu Jing , Li Wei , Yundong Wang , Yanmei Yu., “Synthesis, characterization and CO2 capture of mesoporous SBA-15 adsorbents functionalized with melamine-based and acrylate-based amine dendrimers” , Microporous and Mesoporous Materials. , Vol 183, pp 124–133,2014.

[26]Zhao D Y, Huo Q S, Feng J L, et al. “Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures . ” Journal of J. Am. Chem. Soc., vol 120,pp 6024−6036, 1998.

[27]Innocenzi, P. “Infrared spectroscopy of sol–gel derived silica-based films:a spectra-microstucture overview. ”Journal of Non-Crystalline Solids.vol 316,pp 309–319, 2003.

[28]Forester, T.R., Howe, R.F. “In situ FTIR studies of methanol and dimethyl ether in ZSM-5. ”Journal of the American Chemical Society.vol 109,pp 5076–5082, 1987.

[29]Giovannetti, R., Alibabaei, L., Samanipour, S. “ Structure investigations of binary azeotrope of diethyl amine-acetone by FT-IR and 1H NMR spectroscopy. ” Spectrochimica Acta Part A,vol 72,pp 390–393, 2009.

[30]Chernev, G., Rangelova, N., Djambazki, P., Nenkova, S., Salvado, I., Fernandes, M., Wu,A., Kabaivanova, L. Sol–gel silica hubrid biomaterials for application in biodegradation of toxic compounds. ” Journal of Sol–Gel Science and Technology. Vol 58,pp 619–624 , 2011.

[31]Kane, S.R., Ashby, P.D., Pruitt, L.A. “ ATR-FTIR as a thickness measurement technique for hydrated polymer-on-polymer coatings. ” Journal of Biomedical Materials Research Part B.vol 91B,pp 613–620, 2009.

[32]Khan, R., Khare, P., Baruah, B.P., Hazarika, A.K., Dey, N.C. “Spectroscopic, kinetic studies of polyaniline-flyash composite. ” Advances in Chemical Engineering and Science.vol 1,pp 37–44, 2011.

[33]Lopez, T., Herrera, L., Mendez-Vivar, J., Bosch, P., Gomez, R., Gonzalez, R.D. “Support effect in ruthenium sol–gel catalysts on silica and alumina. ” Journal of Non-Crystalline Solids. vol 147–148,pp 773–777,1992.

[34]Lopez, T., Bosch, P., Moran, M., Gomez, R. “Pt/SiO2sol–gel catalysts: effects of pH and platinum precursor. ” Journal of Physical Chemistry.vol 97,pp 1671–1677,1993.

[35]Prasad, P.S.R., Prasad, K.S., Chaitanya, V.K., Babu, E.V.S.S.K., Sreedhar, B., Murthy, S.R. “In situ FTIR study on the dehydration of natural goethite. ” Journal of Asian Earth Sciences.vol 27,pp 503–511,2006.

[36]Battjes, K.P., Barolo, A.M., Dreyfuss, P. “New evidence related to reaction of aminated silane coupling agents with carbon dioxide. ”Journal of Adhesion Scienceand Technology.vol 5,pp 785–799, 1991.

[37]田民波, “材料學概論” ,2015.

[38]施周,張文輝, “環境奈米技術” ,2006.

[39]連建偉, “聚合物表面改性方法綜述” ,中國林業科學研究院林產化學工業研究所,2011.

[40]李季燃, “高分子特論” ,2012.

[41]廖正福, “聚合物材料改性”,2011.

[42]中國藥典第二部,pp 617,2005.

[43]Interface Science and Composites,pp 70,2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top