跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 22:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐士閔
研究生(外文):Shih-Min Hsu
論文名稱:利用動物及細胞模式探討牛樟芝功效成份Ergostatrien-3β-ol對肝臟缺血再灌流損傷之抗氧化及抗發炎機制
論文名稱(外文):The Mechanism Study Underlying the Anti-oxidant and Anti-inflammation Activities of Ergostatrien-3β-ol from Antrodia camphorata Using Ischemia and Reperfusion Injury Rat Model
指導教授:謝淑貞謝淑貞引用關係
指導教授(外文):Shu-Chen Hsieh
口試委員:黃智興郭靜娟羅翊禎
口試委員(外文):Tze-Sing HuangChing-Chuan KuoYi-Chen Lo
口試日期:2014-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:89
中文關鍵詞:肝臟缺血再灌流損傷(hepatic ischemia and reperfusion injury;hepatic IR injury)抗氧化(antioxidation)抗發炎(anti-inflammation)Nuclear factor erythroid 2-related factor 2 (Nrf2)HO-1 (Heme oxygenase-1)
外文關鍵詞:Hepatic ischemia and reperfusion (IR)AntioxidationAnti-inflammationNuclear factor erythroid 2-related factor 2 (Nrf2)HO-1 (Heme oxygenase-1)
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1860
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
牛樟芝被認為是具有醫療功效的珍貴中藥材,常被用來改善食物藥物中毒、腹瀉、高血壓以及肝癌。近來研究發現,牛樟芝的生物活性成分具有多種功效,其中護肝之效果尤其顯著。Ergostatrien-3β-ol (EK100)為牛樟芝當中的有效活性成分之一,子實體及菌絲體中皆存在,然而其相關研究甚少。本實驗利用動物模式模擬缺血再灌流所造成的肝損傷 (hepatic ischemia and reperfusion injury;IR injury),並藉由牛樟芝之有效成分 EK100 可護肝、抗發炎的特性,觀察是否能減少肝臟缺血再灌流所產生的傷害。於臨床上,心肌梗塞、中風、大面積的創傷或組織器官移植都有可能產生缺血再灌流損傷,在阻斷血流及氧氣的供應下,對於組織器官產生不可逆的損傷,當再恢復血流供應時,頓時有大量血液再次供給器官組織氧氣及營養,然而此時因為大量含氧血瞬間由血管進入組織器官中,同時產生大量的活性氧化物,造成細胞更大量的損傷,進一步導致細胞發炎,造成惡性循環。本研究在動物實驗中發現EK100可有效降低肝臟缺血再灌流損傷所造成的ALT、AST的上升,並可使促發炎物質TNF-α、IL-6及IL-1 β下降。對於肝臟中iNOS mRNA的表現量也有顯著降低的效果,在抗氧化方面,EK100可造成肝臟抗氧化酵素SOD的上升。因此進一步以細胞模式分析EK100的抗發炎和抗氧化機制。發現EK100可藉由促進Nrf2進入細胞核提升反應活性,進一步活化下游基因HO-1及NQO1 mRNA的表現量,並在濃度10 μM 達最顯著效果,時間則以17小時效果最佳。另外在人類肝癌細胞HepG2以H2O2誘導氧化壓力處理6小時,HO-1 mRNA表現量增加約3倍,給予EK100前處理17小時的組別,HO-1 mRNA表現量則增加至約7倍,但在12小時所有組別之HO-1 mRNA表現量與控制組間則無顯著差異。給予小鼠巨噬細胞Raw264.7預處理E100,並利用LPS (1 μg/ml)誘導產生發炎反應,EK100可減少iNOS之mRNA表現並且降低NO產量,其可能是調控HO-1之表現增加達到此效果,並非藉由調控轉錄因子NF-κB達到抗發炎之功效。由本實驗結果可知EK100具有良好的抗發炎及抗氧化功效,藉由此功效可有效降低大鼠缺血再灌流損傷,未來極具發產潛力。

Antrodia camphorate has been considered as one of most efficient and precious Chinese herbal medicines, and it has been used as remedy for curing food poisoning, diarrhea, stomachache, hypertension, itchy skin, and liver cancer. Recently, liver protecting characteristic of Antrodia camphorata was believed as the most important bioactivity. Ergostatrien-3β-ol (EK100), which exists in both fruiting body and mycelia, is one of compounds with high liver-protecting property; however, investigation for this compound is scarce. In the present research, animal model with hepatic ischemia and reperfusion injury (IR injury) was created, and EK100, which is asserted to possess liver-protecting and anti-inflammatory effects, was used for decreasing live damages resulted from IR injury. Clinically, IR injury occurs in patients with myocardial infraction, stroke, or large trauma, in which tissue is injured irreversibly by deficient supply of oxygen due to blood flow blocking, and harmed again by violet inflammatory response brought from fast and massive accumulation of reactive oxygen species after blood is resupplied. In our animal study, EK100 decreased ALT and AST, which is mainly come from liver injury, and it also lowered the proinflammatory cytokines such as TNF-α, IL-6, as well as IL-1. In addition, EK100 significantly reduced the mRNA expression of iNOS, and increased SOD, which is an antioxidant enzyme in liver. A further investigation in anti-inflammatory and antioxidant mechanisms of EK100 was conducted by cell model. EK100 improved the translocation of Nrf2 into nuclei, activating the downstream genes of HO-1 and NQO1. The most efficient dosage and effect time were observed at 10 μM and 17 hours.

口試委員審定書 I
謝 誌 II
英文縮寫對照表 IV
摘 要 VI
Abstract VIII
目錄 IX
表目錄 XII
圖目錄 XIII
1.1 牛樟芝介紹 1
1.1.1 學名 1
1.1.2 原產地及栽培方式 1
1.1.3 用途及其功效成分 2
1.1.4 Ergostatrien-3β-ol 3
1.2 缺血再灌流損傷 4
1.2.1 缺血再灌流傷害 (Ischemia and reperfusion injury;IR)於臨床 4
1.2.2 肝臟的缺血再灌流損傷之病理機制 4
1.3 發炎反應 6
1.3.1 發炎所導致的細胞損傷 6
1.3.2 NF-κB Pathway 7
1.3.3 誘導型一氧化氮合成酵素 (Induced nitric oxide synthase, iNOS) 8
1.3.4 環氧化酵素第二型 (Cyclooxygenase-2, COX-2) 9
1.3.5 細胞激素 (Cytokines) 10
1.3.5.1 腫瘤壞死因子(Tumor necrosis factor-α, TNF-α) 10
1.3.5.2 介白素-1 (Interleukins 1, IL-1) 12
1.3.5.3 介白素-6 (Interleukins 6, IL-6) 13
1.4 氧化壓力 13
1.4.1 自由基 (Free radical) 13
1.4.2 氧化壓力的來源 13
1.4.3 氧化壓力所導致的細胞損傷 16
1.4.4 氧化壓力訊息與發炎訊息的對話 (cross-talk) 22
1.5 體內抗氧化防禦系統 23
1.5.1 體內抗氧化系統 23
1.5.2 Nuclear factor-erythroid 2-related factor 2 (Nrf2) 路徑 25
1.5.2.1 血基質氧化&;#37238; (Heme oxygenase-1, HO-1) 25
1.5.2.2 NAD(P)H:quinone 氧化還原酵素1 (NAD(P)H:quinone oxidoreductase 1, NQO1) 27
第二章 研究目的與實驗架構 28
2.1 研究動機與目的 28
2.2 實驗架構 29
第三章 實驗材料與方法 31
3.1 實驗試劑與設備 31
3.2 牛樟芝萃取物EK100樣品製備 35
3.3 實驗方法 35
3.3.1 動物實驗 35
3.3.2 肝指數之測定 37
3.3.3 血清中細胞激素 IL-1 β、IL-6、TNF-α 之含量測定 37
3.3.4 超氧岐化&;#37238;總活性之測定 37
3.3.5 肝中穀胱甘&;#32957;含量之測定 38
3.3.6 總RNA的萃取及 Real-time semi-quantification PCR 38
3.3.7 細胞培養 39
HepG2細胞株 39
3.3.8 細胞毒殺性分析 (Cytotoxicity analysis)- MTT assay 40
3.3.9 西方墨點法 (Western blot analysis) 41
3.3.10 螢光免疫染色法 (Immuno&;#64258;uorescence staining) 41
第四章 結果 42
4.1 動物實驗 42
4.1.1 EK100減少肝臟缺血再灌流損傷之效果 42
4.1.2 EK100降低肝臟缺血再灌流損傷引起之發炎反應的效果 45
4.1.3 EK100於肝臟缺血再灌流損傷模式之抗氧化效果 48
4.2 以細胞模式檢驗EK100的抗氧化功效 52
4.2.1 EK100對於HepG2細胞株之毒性分析 52
4.2.2 EK100對於HepG2細胞株之抗氧化功效 54
4.3 H2O2誘導產生的氧化壓力下EK100於人類肝癌細胞HepG2中對於抗氧化相關酵素之影響 58
4.4 EK100於小鼠巨噬細胞Raw264.7中對於LPS誘導之發炎反應所產生之影響 60
第五章 討論 64
第六章 結論 68
第七章 參考文獻 69


Abu-Amara, M., Yang, S.Y., Tapuria, N., Fuller, B., Davidson, B., and Seifalian, A.
(2010). Liver ischemia/reperfusion injury: processes in inflammatory networks--a review. Liver Transpl 16, 1016-1032.
Aggarwal, B.B. (2003). Signalling pathways of the TNF superfamily: a double-edged
sword. Nature Reviews Immunology 3, 745-756.
Aguirre, J., and Lambeth, J.D. (2010). Nox enzymes from fungus to fly to fish and what
they tell us about Nox function in mammals. Free Radic Biol Med 49, 1342-1353.
Ait-Oufella, H., Taleb, S., Mallat, Z., and Tedgui, A. (2011). Recent advances on the
role of cytokines in atherosclerosis. Atertio Thromb Vasc Biol 31, 969-979.
Alam, J., Stewart, D., Touchard, C., Boinapally, S., Choi, A.M., and Cook, J.L. (1999).
Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 274, 26071-26078.
Alex B.Lentsch, Atsushi Kato, Hiroyuki Yoshidome, Kelly M. McMasters, and Edwards, M.J. (2000). Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology 32, 169-173.
Apopa, P.L., He, X., and Ma, Q. (2008). Phosphorylation of Nrf2 in the transcription
activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells. J Biochem Mol Toxicol 22, 63-76.
Ardite, E., Barbera, J.A., Roca, J., and Fernandez-Checa, J.C. (2004). Glutathione
depletion impairs myogenic differentiation of murine skeletal muscle C2C12 cells through sustained NF-κB activation. The American journal of pathology 165, 719-728.
Atsushi, M., Hideki, N., Kei, T., Kohsuke, T., and Hidenori, I. (2002). Physiological
roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice Antioxidants &; Redox Signaling 4, 415-425.
Atsushi, M., and Hidenori, I. (2005). Stress-Responsive Protein Kinases in
Redox-Regulated Apoptosis Signaling. Antioxidants &; Redox Signaling 7, 472-481.
Ayala, A., Perrin, M.M., Ertel, W., and Chaudry, I.H. (1992). Differential effects of
hemorrhage on kupffer cells: decreased antigen presentation despite increased inflammatory cytokine (IL-1, IL-6 and TNF) release. Cytokine 4, 66-75.
Ayala, A., Wang, P., Ba, Z.f., Perrin, M.M., Ertel, W., and Chaudry, I.H. (1991).
Differential alterations in plasma IL-6 and TNF levels after trauma and hemorrhage. Am J Physiol 260, R167-171.
Baehner, R.L., Nathan, D. G. (1967 ). Leukocyte oxidase: defective activity in chronic
granulomatous disease. Science 155(764), 835-836.
Baker, S.J., and Reddy, E.P. (1998). Modulation of life and death by the TNF receptor
superfamily. Oncogene 17, 3261-3270.
Bedard, K., &; Krause, K. H. (2007a). The NOX family of ROS-generating NADPH
oxidases: physiology and pathophysiology. Physiol Rev 87, 245-313.
Bedard, K., Krause, K. H. (2007b). The NOX Family of ROS-Generating NADPH
Oxidases: Physiology and Pathophysiology. Physiol Rev 87(1), 245-313.
Bianchi, M.E., and Manfredi, A.A. (2007). High&;#8208;mobility group box 1 (HMGB1)
protein at the crossroads between innate and adaptive immunity. Immunol Rev 220, 35-46.
Bossy-Wetzel, E., Schwarzenbacher, R., and Lipton, S.A. (2004). Molecular pathways
to neurodegeneration. Nat Med 10 Suppl, S2-9.
Brown, D.I., and Griendling, K.K. (2009). Nox proteins in signal transduction. Free
Radic Biol Med 47, 1239-1253.
Bulavin, D.V., Saito, S., Hollander, M.C., Sakaguchi, K., Anderson, C.W., Appella, E.,
and Fornace, A.J. (1999). Phosphorylation of human p53 by p38 kinase coordinates N&;#8208;terminal phosphorylation and apoptosis in response to UV radiation. EMBO 18(23), 6845-6854.
Burkea, J., Zibaria, G.B., Browna, M.F., Grangerb, N., Kellya, R., Singha, I., and
McDonald, J.C. (1998). Hepatic ischemia-reperfusion injury causes E-selectin upregulation. Transplant Proc 30, 2321-2323.
Buschmann, T., Potapova, O., Bar-Shira, A., Ivanov, V.N., Fuchs, S.Y., Henderson, S.,
Fried, V.A., Minamoto, T., Alarcon-Vargas, D., and Pincus, M.R. (2001). Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol 21, 2743-2754.
Bustin, M., and Reeves, R. (1996). High-mobility-group chromosomal proteins:
architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol 54, 35-100b.
Camargo, C.A., Madden, J.F., Gao, W., Selvan, R.S., and Clavien, P. (1997).
Interleukin&;#8208;6 protects liver against warm ischemia/reperfusion injury and promotes hepatocyte proliferation in the rodent. Hepatology 26, 1513-1520.
Chen, L., Hu, J.Y., and Wang, S.Q. (2012). The role of antioxidants in photoprotection:
a critical review. J Am Acad Dermatol 67, 1013-1024.
Chen, Q.M., Liu, J., and Merrett, J.B. (2000). Apoptosis or senescence-like growth
arrest: in&;#64258;uence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human &;#64257;broblasts. Biochem J 347, 543-551.
Chen, X.-L., and Kunsch, C. (2004). Induction of cytoprotective genes through
Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr Pharm Des 10, 879-891.
Chen, X.L., Dodd, G., Thomas, S., Zhang, X., Wasserman, M.A., Rovin, B.H., and
Kunsch, C. (2006). Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. American Journal of Physiology-Heart and Circulatory Physiology 290, H1862-H1870.
Cho, H.-Y., Jedlicka, A.E., Reddy, S.P., Kensler, T.W., Yamamoto, M., Zhang, L.-Y., and
Kleeberger, S.R. (2002). Role of NRF2 in protection against hyperoxic lung injury in mice. Am J Respir Cell Mol Biol 26, 175-182.
Clemens, M.G. (1999). Nitric oxide in liver injury. Hepatology 30, 1-5.
Colletti, L.M., Cortis, A., Lukacs, N., Kunkel, S.L., Green, M., and Strieter, R.M.
(1998). Tumor necrosis factor up-regulates intercellular adhesion molecule 1, which is important in the neutrophil-dependent lung and liver injury associated with hepatic ischemia and reperfusion in the rat. Shock 10, 182-191.
Colletti, L.M., Kunkel, S.L., Walz, A., Burdick, M.D., Kunkel, R.G., Wilke, C.A., and
Strieter, R.M. (1995). Chemokine expression during hepatic ischemia/reperfusion-induced lung injury in the rat. The role of epithelial neutrophil activating protein. J Clin Invest 95, 134-141.
Colletti, L.M., Remick, D.G., Burtch, G.D., Kunkel, S.L., Strieter, R.M., and Campbell,
D.A.J. (1990). Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat. J Clin Invest 85, 1936-1943.
Curran, R.D., Billiar, T.R., Stuehr, D.J., Ochoa, J.B., Harbrecht, B.G., Flint, S.G., and
Simmons, R.I. (1990). Multiple cytokines are required to induce hepatocyte nitric oxide production and inhibit total protein synthesis. Ann Surg 212, 462-471.
Czaja, M.J., Xu, J., and Alt, E. (1995). Prevention of carbon tetrachloride-induced rat
liver injury by soluble tumor necrosis factor receptor. Gastroenterology 108, 1849-1854.
Dinkova-Kostova, A.T., and Talalay, P. (2010). NAD (P) H: quinone acceptor
oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 501, 116-123.
Donath, M.Y., and Shoelson, S.E. (2011). Type 2 diabetes as an inflammatory disease.
Nature Reviews Immunology 11, 98-107.
El&;#8722;Benna, J., Dang, P.M.C., Gougerot&;#8722;Pocidalo, M.A., and Elbim, C. (2005).
Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses. Arch Immunol Ther Exp (Warsz) 53, 199-206.
Ertel, W., Morrison, M.H., Ayala, A., and Chaudry, I.H. (1991). Chloroquine attenuates
hemorrhagic shock-induced suppression of Kupffer cell antigen presentation and major histocompatibility complex class II antigen expression through blockade of tumor necrosis factor and prostaglandin release. Blood 78, 1781-1788.
Faig, M., Bianchet, M.A., Talalay, P., Chen, S., Winski, S., Ross, D., and Amzel, L.M.
(2000). Structures of recombinant human and mouse NAD (P) H: quinone oxidoreductases: species comparison and structural changes with substrate binding and release. Proceedings of the National Academy of Sciences 97, 3177-3182.
Fenton, H. (1894). Oxidation of tartaric acid in presence of iron. J Chem Soc, Trans 65,
899-910.
Ferdinand Serracino-Inglott , Nagy A. Habib , and Robert T. Mathie, (2001). Hepatic
ischemia-reperfusion injury. The American Journal of Surgery 181, 160-166.

Finkel, T. (2011). Signal transduction by reactive oxygen species. The Journal of cell
biology 194, 7-15.
Fong, Y., Moldawer, L., Shires, G., and Lowry, S. (1990). The biologic characteristics of
cytokines and their implication in surgical injury. Surg Gynecol Obstet 170, 363-378.
Freitas, A., Alves&;#8208;Filho, J., Secco, D., Neto, A., Ferreira, S., Barja&;#8208;Fidalgo, C., and
Cunha, F. (2006). Heme oxygenase/carbon monoxide&;#8208;biliverdin pathway down regulates neutrophil rolling, adhesion and migration in acute inflammation. Br J Pharmacol 149, 345-354.
Furukawa, M., and Xiong, Y. (2005). BTB protein Keap1 targets antioxidant
transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 25, 162-171.
Gamou, S., and Shimizu, N. (1995). Hydrogen peroxide preferentially enhances the
tyrosine phosphorylation of epidermal growth factor receptor. FEBS Letters 357, 161-164.
Geller, D.A., Lowenstein, C.J., Shapiro, R.A., Nussler, A.K., Di Silvio, M., Wang, S.C.,
Nakayama, D.K., Simmons, R.L., Snyder, S.H., and Billiar, T.R. (1993). Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proceedings of the National Academy of Sciences 90, 3491-3495.
Giacco, F., and Brownlee, M. (2010). Oxidative stress and diabetic complications. Circ
Res 107, 1058-1070.
Gill, R., Tsung, A., and Billiar, T. (2010). Linking oxidative stress to inflammation:
Toll-like receptors. Free Radical Biol Med 48, 1121-1132.
Gilmore, T.D. (2006). Introduction to NF-kappaB: players, pathways, perspectives.
Oncogene 25, 6680-6684.
Giorgio, M., Migliaccio, E., Orsini, F., Paolucci, D., Moroni, M., Contursi, C., Pelliccia,
G., Luzi, L., Minucci, S., Marcaccio, M., et al. (2005). Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122, 221-233.
Goldkorn, T., Balaban, N., Matsukuma, K., Chea, V., Gould, R., Last, J., Chan, C., and
Chavez, C. (1998). EGF-Receptor phosphorylation and signaling are targeted by H2O2 redox stress. Am J Respir Cell Mol Biol 19, 786-798.
Goossens, V., Grooten, J., Vos, K.D., and Fiers, W. (1995). Direct evidence for tumor
necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proceedings of the National Academy of Sciences 92, 8115-8119.
Gopalakrishnan, A., and Tony Kong, A.-N. (2008). Anticarcinogenesis by dietary
phytochemicals: cytoprotection by Nrf2 in normal cells and cytotoxicity by modulation of transcription factors NF-κB and AP-1 in abnormal cancer cells. Food Chem Toxicol 46, 1257-1270.
Grivennikov, S.I., and Karin, M. (2011). Inflammatory cytokines in cancer: tumour
necrosis factor and interleukin 6 take the stage. Ann Rheum Dis 70, i104-i108.
Harrison, P.M., and Arosio, P. (1996). The ferritins: molecular properties, iron storage
function and cellular regulation. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1275, 161-203.
Hearse, D.J., Humphrey, S.M., Nayler, W.G., Slade, A., and Border, D. (1975).
Ultrastructural damage associated with reoxygenation of the anoxic myocardium. J Mol Cell Cardiol 7, 315-324.
Helyar, L., Bundschuh, D.S., Laskin, J.D., and Laskin, D.L. (1994). Induction of hepatic
Ito cell nitric oxide production after acute endotoxemia. Hepatology 20, 1509-1515.
Hess, J., Angel, P., and Schorpp-Kistner, M. (2004). AP-1 subunits: quarrel and
harmony among siblings. J Cell Sci 117, 5965-5973.
Hirota, K., Matsui, M., Iwata, S., Nishiyama, A., Mori, K., and Yodoi, J. (1997). AP-1
transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proceedings of the National Academy of Sciences of the United States of America 94, 3633-3638.
Huang, G.-J., Deng, J.-S., Huang, S.-S., Shao, Y.-Y., Chen, C.-C., and Kuo, Y.-H. (2012a).
Protective effect of antrosterol from Antrodia camphorata submerged whole broth against carbon tetrachloride-induced acute liver injury in mice. Food Chem 132, 709-716.
Huang, G.J., Huang, S.S., Lin, S.S., Shao, Y.Y., Chen, C.C., Hou, W.C., and Kuo, Y.H.
(2010). Analgesic effects and the mechanisms of anti-inflammation of ergostatrien-3beta-ol from Antrodia camphorata submerged whole broth in mice. Journal of agricultural and food chemistry 58, 7445-7452.
Huang, H.C., Liaw, C.C., Yang, H.L., Hseu, Y.C., Kuo, H.T., Tsai, Y.C., Chien, S.C.,
Sakae Amagaya, Chen, Y.C., Kuo, Y.H. (2012 b). Lanostane triterpenoids and sterols from Antrodia camphorata. Phytochemistry 84, 177-183.
Huang, R.-P., Peng, A., Golard, A., Hossain, M.Z., Huang, R., Liu, Y.-G., and Boynton,
A.L. (2001). Hydrogen peroxide promotes transformation of rat liver non-neoplastic epithelial cells through activation of epidermal growth factor receptor. Mol Carcinog 30, 209-217.
Hur, G.M., Ryu, Y.S., Yun, H.Y., Jeon, B.H., Kim, Y.M., Seok, J.H., and Lee, J.H.
(1999). Hepatic Ischemia/Reperfusion in Rats Induces iNOS Gene Transcription by Activation of NF-κB. BBRC 261, 917-922.
Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi,
N., Satoh, K., and Hatayama, I. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. BBRC 236, 313-322.
Itoh, K., Igarashi, K., Hayashi, N., Nishizawa, M., and Yamamoto, M. (1995). Cloning
and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Mol Cell Biol 15, 4184-4193.
Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J.D., and Yamamoto,
M. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13, 76-86.
Jaeschke, H. (1991). Reactive oxygen and ischemia/reperfusion injury of the liver.
Chem-Biol Interact 79, 115-136.
Jaeschke, H. (2003). Molecular mechanisms of hepatic ischemia-reperfusion injury and
preconditioning. American Journal of Physiology-Gastrointestinal and Liver Physiology 284, G15-G26.
Jaeschke, H. (2006). Mechanisms of Liver Injury. II. Mechanisms of neutrophil-induced
liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions. Am J Physiol Gastrointest Liver Physiol 290, G1083-1088.
Jaeschke, H., Bautista, A.P., Spolarics, Z., and Spitzer, J.J. (1991). Superoxide
Generation by kupffer cells and Priming of Neutrophils During Reperfusion After Hepatic Ischemia. Free Radical Res 15, 277-284.
Jaeschke, H., and Smith, C.W. (1997). Mechanisms of neutrophil-induced parenchymal
cell injury. J Leukocyte Biol 61, 647-653.
Janssen-Heininger, W., Y.M., Poynter, M.E., and Baeuerle, P.A. (2000). Recent
advances torwards understanding redox mechanisms in the activation of nuclear factor κb. Free Radical Biol Med 28, 1317-1327.
Jeong, W.S., Jun, M., and Kong, A.N.T. (2006). Nrf2: a potential molecular target for
cancer chemoprevention by natural compounds. Antioxidants &; redox signaling 8, 99-106.
Johnson, T.M., Yu, Z.-X., Ferrans, V.J., Lowenstein, R.A., and Finkel, T. (1996).
Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proceedings of the National Academy of Sciences of the United States of America 93, 11848-11852.
Kadl, A., Pontiller, J., Exner, M., and Leitinger, N. (2007). Single bolus injection of
bilirubin improves the clinical outcome in a mouse model of endotoxemia. Shock 28, 582-588.
Kapitulnik, J., and Maines, M.D. (2009). Pleiotropic functions of biliverdin reductase:
cellular signaling and generation of cytoprotective and cytotoxic bilirubin. Trends Pharmacol Sci 30, 129-137.
Katiyar, S.K., Afaq, F., Perez, A., and Mukhtar, H. (2001). Green tea polyphenol
(–)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis 22, 287-294.
Kensler, T.W., Wakabayashi, N., and Biswal, S. (2007). Cell survival responses to
environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47, 89-116.
Klune, J.R., Dhupar, R., Cardinal, J., Billiar, T.R., and Tsung, A. (2008). HMGB1:
endogenous danger signaling. Mol Med 14, 476.
Kobayashi, A., Kang, M.-I., Okawa, H., Ohtsuji, M., Zenke, Y., Chiba, T., Igarashi, K.,
and Yamamoto, M. (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24, 7130-7139.
Kobayashi, M., Li, L., Iwamoto, N., Nakajima-Takagi, Y., Kaneko, H., Nakayama, Y.,
Eguchi, M., Wada, Y., Kumagai, Y., and Yamamoto, M. (2009). The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol 29, 493-502.
Koeppel, T.A., Lehmann, T.G., Thies, J.C., Gehrcke, R., Gebhard, M.-M., Herfarth, C.,
Otto, G., and Post, S. (1996). Impact of N-Acetylcysteine on the Hepatic Microcirculation After Orthotopic Liver Transplantation1. Transplantation 61, 1397-1402.
Kono, H., and Rock, K.L. (2008). How dying cells alert the immune system to danger.
Nature Reviews Immunology 8, 279-289.
Kwak, M.-K., Itoh, K., Yamamoto, M., Sutter, T.R., and Kensler, T.W. (2001). Role of
transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1, 2-dimethiole-3-thione. Mol Med 7, 135.
Land, W.G. (2005). The role of postischemic reperfusion injury and other
nonantigen-dependent inflammatory pathways in transplantation. Transplantation 79, 505-514.
Lee, J., Giordano, S., and Zhang, J. (2012). Autophagy, mitochondria and oxidative
stress: cross-talk and redox signalling. Biochem J 441, 523-540.
Lee, J.M., and Johnson, J.A. (2004). An important role of Nrf2-ARE pathway in the
cellular defense mechanism. BMB Reports 37, 139-143.
Lee, J.S., Kim, S.Y., Kwon, C.H., and Kim, Y.K. (2006). EGFR-dependent ERK
activation triggers hydrogen peroxide-induced apoptosis in OK renal epithelial cells. Arch Toxicol 80, 337-346.
Lee, W.C., Choi, C.H., Cha, S.H., Oh, H.L., and Kim, Y.K. (2005). Role of ERK in
Hydrogen Peroxide-Induced Cell Death of Human Glioma Cells. Neurochem Res 30, 263-270.
Leist, M., Gantner, F., Bohlinge, I., Tiegs, G., Germann, P.-G., and Wendel, A. (1995).
Tumor necrosis factor-induced hepatocyte apoptosis precedes liver failure in experimental murine shock models. The American journal of pathology 146, 1220.
Lentsch, A.B., Kato, A., Yoshidome, H., McMasters, K.M., and Edwards, M.J. (2000).
Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology 32, 169-173.
Liu, Y.W., Lu, K.H., Ho, C.T., Sheen, L.Y. (2011). Protective effects of Antrodia
Cinnamomea against liver injury. Journal of Traditional and Complementary Medicine 1.2, 284-294.
Lotze, M.T., and Tracey, K.J. (2005). High-mobility group box 1 protein (HMGB1):
nuclear weapon in the immune arsenal. Nature Reviews Immunology 5, 331-342.
Luster, M.I., Simeonova, P.P., Gallucci, R., and Matheson, J. (1999). Tumor Necrosis
Factor a and Toxicology. Crit Rev Toxicol 29, 491-511.
Muller, S., Scaffidi, P., Degryse, B., Bonaldi, T., Ronfani, L., Agresti, A., Beltrame, M.,
and Bianchi, M.E. (2001). The double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO 20, 4337-4340.
Meplan, C., Richard, M.-J., and Hainaut, P. (2000). Redox signalling and transition
metals in the control of the p53 pathway. Biochem Pharmacol 59, 25-33.
Ma, Q. (2008). Xenobiotic-activated receptors: from transcription to drug metabolism to
disease. Chem Res Toxicol 21, 1651-1671.
Ma, Q. (2010). Transcriptional responses to oxidative stress: pathological and
toxicological implications. Pharmacol Ther 125, 376-393.
Ma, Q., Battelli, L., and Hubbs, A.F. (2006). Multiorgan Autoimmune Inflammation,
Enhanced Lymphoproliferation, and Impaired Homeostasis of Reactive Oxygen Species in Mice Lacking the Antioxidant-Activated Transcription Factor” Nrf2”. The American journal of pathology 168, 1960-1974.
Maier, J., Hla, T., and Maciag, T. (1990). Cyclooxygenase is an immediate-early gene
induced by interleukin-1 in human endothelial cells. J Biol Chem 265, 10805-10808.
Manna, S.K., Mukhopadhyay, A., and Aggarwal, B.B. (2000). Resveratrol suppresses
TNF-induced activation of nuclear transcription factors NF-κB, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. The Journal of Immunology 164, 6509-6519.
Martindale, J.L., and Holbrook, N.J. (2002). Cellular response to oxidative stress:
signaling for suicide and survival. J Cell Physiol 192, 1-15.
Masao, S., Hideki, N., Makiko, F., Kohsuke, T., Kei, T., Yasuhiro, S., Masahiro, K.,
Kohei, M., and Hidenori, I. (1998). Mammalian thioredoxin is a direct inhibitor of
apoptosis signal&;#8208;regulating kinase (ASK) 1. EMBO 17(9), 2596-2606.
Matsukawa, J., Matsuzawa, A., Takeda, K., and Ichijo, H. (2004). The ASK1-MAP
kinase cascades in mammalian stress response. J Biochem 136, 261-265.
Mccord, J.M. (1985). Oxygen-derived free radicals in postischemic tissue injury. The
New England journal of medicine 312, 159-163.
Mizoe, A., Kondo, S., Azuma, T., Fujioka, H., Tanaka, K., Hashida, M., and Kanematsu,
T. (1997). Preventive Effects of Superoxide Dismutase Derivatives Modified with Monosaccharides on Reperfusion Injury in Rat Liver Transplantation. J Surg Res 73, 160-165.
Morgan, M.J., and Liu, Z.G. (2011). Crosstalk of reactive oxygen species and
NF-kappaB signaling. Cell Res 21, 103-115.
Muraoka, K.-i., Shimizu, K., Sun, X., Zhang, Y.K., Tani, T., Hashimoto, T., Yagi, M.,
Miyazaki, I., and Yamamoto, K.-i. (1997). Hypoxia, but not reoxygenation, induces
interleukin 6 gene expression through nf-[kappa] b activation 1. Transplantation 63, 466-470.
Murry, C.E., Jennings, R.B., and Reimer, K.A. (1986). Preconditioning with ischemia: a
delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124-1136.
Na, H.K., and Surh, Y.J. (2006). Transcriptional regulation via cysteine thiol
modification: a novel molecular strategy for chemoprevention and cytoprotection. Mol Carcinog 45, 368-380.
Nathan, C., and Cunningham-Bussel, A. (2013). Beyond oxidative stress: an
immunologist''s guide to reactive oxygen species. Nat Rev Immunol 13, 349-361.
Nitescu, N., Ricksten, S.-E., Marcussen, N., Haraldsson, B., Nilsson, U., Basu, S., and
Guron, G. (2006). N-acetylcysteine attenuates kidney injury in rats subjected to renal ischaemia-reperfusion. Nephrology Dialysis Transplantation 21, 1240-1247.
O''Neill, G.P., and Ford-Hutchinson, A.W. (1993). Expression of mRNA for
cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett 330, 157-160.
O''Neill, L.A. (2006). Targeting signal transduction as a strategy to treat inflammatory
diseases. Nature reviews Drug discovery 5, 549-563.
Oeckinghaus, A., Hayden, M.S., and Ghosh, S. (2011). Crosstalk in NF-[kappa] B
signaling pathways. Nat Immunol 12, 695-708.
Oshima, M., Dinchuk, J.E., Kargman, S.L., Oshima, H., Hancock, B., Kwong, E.,
Trzaskos, J.M., Evans, J.F., and Taketo, M.M. (1996). Suppression of Intestinal Polyposis in ApcΔ716 Knockout Mice by Inhibition of Cyclooxygenase 2 (COX-2). Cell 87, 803-809.
Park, J., Kang, J.-W., and Lee, S.-M. (2013). Activation of the cholinergic
anti-inflammatory pathway by nicotine attenuates hepatic ischemia/reperfusion injury via heme oxygenase-1 induction. Eur J Pharmacol 707, 61-70.
Peralta, C., Fernandez, L., Panes, J., Prats, N., Sans, M., Pique, J.M., Gelpi, E., and
Rosello&;#8208;Catafau, J. (2001). Preconditioning protects against systemic disorders associated with hepatic ischemia&;#8208;reperfusion through blockade of tumor necrosis factor–induced P&;#8208;selectin up&;#8208;regulation in the rat. Hepatology 33, 100-113.
Piantadosi, C.A. (2008). Carbon monoxide, reactive oxygen signaling, and oxidative
stress. Free Radical Biol Med 45, 562-569.
Pober, J.S. (1988). Cytokine-mediated activation of vascular endothelium. Physiology
and pathology. The American journal of pathology 133, 426.
Rahman, I. (2005). Oxidative stress in pathogenesis of chronic obstructive pulmonary
disease: cellular and molecular mechanisms. Cell Biochem Biophys 43, 167-188.
Rockey, D.C., and Chung, J.J. (1995). Inducible nitric oxide synthase in rat hepatic
lipocytes and the effect of nitric oxide on lipocyte contractility. J Clin Invest 95, 1199.
Rockey, D.C., and Chung, J.J. (1996). Regulation of inducible nitric oxide synthase in
hepatic sinusoidal endothelial cells. American Journal of Physiology-Gastrointestinal and Liver Physiology 34, G260.
Rockey, D.C., and Chung, J.J. (1998). Reduced nitric oxide production by endothelial
cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology 114, 344-351.
Rockey, D.C., Chung, J.J., McKee, C.M., and Noble, P.W. (1998). Stimulation of
inducible nitric oxide synthase in rat liver by hyaluronan fragments. Hepatology 27, 86-92.
Ross, D. (2004). Quinone reductases multitasking in the metabolic world. Drug Metab
Rev 36, 639-654.
Rubio-Perez, J.M., and Morillas-Ruiz, J.M. (2012). A review: inflammatory process in
Alzheimer''s disease, role of cytokines. The Scientific World Journal 2012.
Sass, G., Barikbin, R., and Tiegs, G. (2012). The multiple functions of heme
oxygenase-1 in the liver. Z Gastroenterol 50, 34-40.
Sawada, K., Ohnishi, K., Kosaka, T., Chikano, S., Egashira, A., Okui, M., Shintani, S.,
Wada, M., Nakasho, K., and Shimoyama, T. (1997). Exacerbated autoimmune hepatitis successfully treated with leukocytapheresis and bilirubin adsorption therapy. J Gastroenterol 32, 689-695.
Sawaya, D.E.J., Zibar, G.B., Minardi, A., Bilton, B., Burney, D., Granger, D.N.,
McDonald, J.C., and Brown, M. (1999). P-selectin contributes to the initial recruitment of rolling and adherent leukocytes in hepatic venules after ischemia/reperfusion. . Shock 12, 227-232.
Schoonbroodt, S., Ferreira, V., Best-Belpomme, M., Boelaert, J.R., Legrand-Poels, S.,
Korner, M., and Piette, J. (2000). Crucial Role of the Amino-Terminal Tyrosine Residue 42 and the Carboxyl-Terminal PEST Domain of I B in NF- B Activation by an Oxidative Stress. The Journal of Immunology 164, 4292-4300.
Schreck, R., Rieber, P., and Baeuerle, P.A. (1991). Reactive oxygen intermediates as
apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO 10, 2247.
Serracino-Inglott, F., Habib, N.A., and Mathie, R.T. (2001). Hepatic
ischemia-reperfusion injury. The American journal of surgery 181, 160-166.
Shah, V., Haddad, F.G., Garcia-Cardena, G., Frangos, J.A., Mennone, A., Groszmann,
R.J., and Sessa, W.C. (1997). Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest 100, 2923.
Shibuya, H., Ohkohchi, N., Tsukamoto, S., and Satomi, S. (1997). Tumor necrosis
factor–induced, superoxide&;#8208;mediated neutrophil accumulation in cold ischemic/reperfused rat liver. Hepatology 26, 113-120.
Shirasugi, N., Wakabayashi, G., Shimazu, M., Oshima, A., Shito, M., Kawachi, S.,
Karahashi, T., Kumamoto, Y., Yoshida, M., and Kitajima, M. (1997). Up-Regulation Of Oxygen-Derived Free Radicals By Interleukin-1 In Hepatic Ischemia/Reperfusion Injury 1. Transplantation 64, 1398-1403.
Singh, I., Zibari, G.B., Brown, M.F., Granger, D.N., Eppihimer, M., Zizzi, H., Cruz, L.,
Meyer, K., Gonzales, E., and McDonald, J.C. (1999). Role of P-selectin expression in hepatic ischemia and reperfusion injury. Clin Transplant 13, 76-82.
Sozzani, S., Bosisio, D., Mantovani, A., and Ghezzi, P. (2005). Linking stress, oxidation
and the chemokine system. Eur J Immunol 35, 3095-3098.
Srisook, K., Kim, C., and Cha, Y.-N. (2005). Molecular mechanisms involved in
enhancing HO-1 expression: de-repression by heme and activation by Nrf2, the" one-two" punch. Antioxidants &; redox signaling 7, 1674-1687.
Stephen, F., and Lowry, M.D. (1993). Cytokine Mediators of Immunity and
Inflammation. Arch Surg 128, 1235-1241.
Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N., and Ames, B.N. (1987).
Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043-1046.
Subramaniam, S.R., and Ellis, E.M. (2011). Esculetin-induced protection of human
hepatoma HepG2 cells against hydrogen peroxide is associated with the Nrf2-dependent induction of the NAD (P) H: Quinone oxidoreductase 1 gene. Toxicol Appl Pharmacol 250, 130-136.
Sun, B.-W., Sun, Y., Sun, Z.-W., and Chen, X. (2008a). CO liberated from CORM-2
modulates the inflammatory response in the liver of thermally injured mice. World journal of gastroenterology: WJG 14, 547.
Sun, B., Zou, X., Chen, Y., Zhang, P., and Shi, G. (2008b). Preconditioning of carbon
monoxide releasing molecule-derived CO attenuates LPS-induced activation of HUVEC. Int J Biol Sci 4, 270.
Suzuki, S., and Toledo-Pereyra, L.H. (1994). Interleukin 1 and tumor necrosis factor
production as the initial stimulants of liver ischemia and reperfusion injury. J Surg Res 57, 253-258.
Tan, M., Li, S., Swaroop, M., Guan, K., Oberley, L.W., and Sun, Y. (1999).
Transcriptional Activation of the Human Glutathione Peroxidase Promoter by p53. J Biol Chem 274, 12061-12066.
Tanigawa, S., Fujii, M., and Hou, D.-X. (2007). Action of Nrf2 and Keap1 in
ARE-mediated NQO1 expression by quercetin. Free Radical Biol Med 42, 1690-1703.
Teoh, N., Leclercq, I., Pena, A.D., and Farrell, G. (2003). Low-dose TNF-α protects
against hepatic ischemia-reperfusion injury in mice: Implications for preconditioning. Hepatology 37, 118-128.
Teoh, N.C. (2011). Hepatic ischemia reperfusion injury: Contemporary perspectives on
pathogenic mechanisms and basis for hepatoprotection-the good, bad and deadly. J Gastroenterol Hepatol 26 Suppl 1, 180-187.
Teoh, N.C., and Farrell, G.C. (2003). Hepatic ischemia reperfusion injury: Pathogenic
mechanisms and basis for hepatoprotection. J Gastroenterol Hepatol 18, 891-902.
Thimmulappa, R.K., Lee, H., Rangasamy, T., Reddy, S.P., Yamamoto, M., Kensler, T.W., and Biswal, S. (2006). Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. The Journal of clinical investigation 116, 984-995.
Thornton, A.J., Strieter, R.M., Lindley, I., Baggiolini, M., and Kunkel, S.l. (1990).
Cytokine-induced gene expression of a neutrophil chemotactic factor/IL-8 in human hepatocytes. The Journal of Immunology 144, 2609-2613.
Tsung, A., Klune, J.R., Zhang, X., Jeyabalan, G., Cao, Z., Peng, X., Stolz, D.B., Geller,
D.A., Rosengart, M.R., and Billiar, T.R. (2007). HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med 204, 2913-2923.
Tsung, A., Sahai, R., Tanaka, H., Nakao, A., Fink, M.P., Lotze, M.T., Yang, H., Li, J.,
Tracey, K.J., Geller, D.A., et al. (2005). The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 201, 1135-1143.
Val Vallyathan, X.S. (1997). The Role of Oxygen Free Radicals in Occupational and
Environmental Lung Diseases. Environmental health perspectives 105(Suppl 1), 165-177.
Vane, J.R. (1971). Inhibition of prostaglandin synthesis as a mechanism of action for
aspirin-like drugs. Nature 231, 232-235.
Vollmar, B., and Menger, M.D. (2009). The Hepatic Microcirculation: Mechanistic
Contributions and Therapeutic Targets in Liver Injury and Repair. Physiol Rev 89, 1269-1339.
Wang, W.W., Smith, D.L., and Zucker, S.D. (2004). Bilirubin inhibits iNOS expression
and NO production in response to endotoxin in rats. Hepatology 40, 424-433.
Wanner, G.A., Ertel, W., Muller, P., Hofer, Y., Leiderer, R., Menger, M.D., and Messmer, K. (1996). Liver ischemia and reperfusion induces a systemic inflammatory response through Kupffer cell activation. Shock 5, 34-40.
Wu, Y., and Zhou, B.P. (2010). TNF-alpha/NF-kappaB/Snail pathway in cancer cell
migration and invasion. Br J Cancer 102, 639-644.
Yachie, A., Toma, T., Mizuno, K., Okamoto, H., Shimura, S., Ohta, K., Kasahara, Y.,
and Koizumi, S. (2003). Heme oxygenase-1 production by peripheral blood monocytes during acute inflammatory illnesses of children. Exp Biol Med 228, 550-556.
Yadav, S.S., Howell, D.N., Gao, W., Steeber, D.A., Harland, R.C., and Clavien, P.-A.
(1998). L-selectin and ICAM-1 mediate reperfusion injury and neutrophil adhesion in the warm ischemic mouse liver. American Journal of Physiology - Gastrointestinal and Liver Physiology 275, G1341-G1352.
Yadav, S.S., Howell, D.N., Steeber, D.A., Harland, R.C., Tedder, T.F., and Clavien, P.-A.
(1999). P-selectin mediates reperfusion injury through neutrophil and platelet sequestration in the warm ischemic mouse liver. Hepatology 29, 1494-1502.
Yamauchi H, B.I., Mittmann U, Geisen HP, Salzer M. (1982). Postischemic Liver
Damage in Rats: Effect of Some Therapeutic Interventions on Survival Rate. The Tohoku Journal of Experimental Medicine Vol. 138, No. 1 P 63-70.
Yamauchi, N., Kuriyama, H., Watanabe, N., Neda, H., Maeda, M., and Niitsu, Y. (1989).
Intracellular hydroxyl radical production induced by recombinant human tumor necrosis factor and its implication in the killing of tumor cells in vitro. Cancer Res 49, 1671-1675.
Yang, H.L., Kuo, Y.H., Tsai, C.T., Huang, Y.T., Chen, S.C., Chang, H.W., Lin, E., Lin,
W.H., and Hseu, Y.C. (2011). Anti-metastatic activities of Antrodia camphorata against human breast cancer cells mediated through suppression of the MAPK signaling pathway. Food Chem Toxicol 49, 290-298.
Yoshidome, H., Lentsch, A.B., Cheadle, W.G., Miller, F.N., and Edwards, M.J. (1999).
Enhanced Pulmonary Expression of CXC Chemokines during Hepatic Ischemia/Reperfusion-Induced Lung Injury in Mice. J Surg Res 81, 33-37.
Yun, N., Eum, H.-A., and Lee, S.-M. (2010). Protective role of heme oxygenase-1
against liver damage caused by hepatic ischemia and reperfusion in rats. Antioxidants &; redox signaling 13, 1503-1512.
Zhai, Y., Petrowsky, H., Hong, J.C., Busuttil, R.W., and Kupiec-Weglinski, J.W. (2013).
Ischaemia-reperfusion injury in liver transplantation--from bench to bedside. Nature reviews Gastroenterology &; hepatology 10, 79-89.
Zhu, M., Zhang, Y., Cooper, S., Sikorski, E., Rohwer, J., and Bowden, G.T. (2004).
Phase II enzyme inducer, sulforaphane, inhibits UVB&;#8208;induced AP&;#8208;1 activation in human keratinocytes by a novel mechanism. Mol Carcinog 41, 179-186.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊