跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 14:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱辰浩
研究生(外文):Chen-Hao Chu
論文名稱:以單一旋轉致動之三末端效應器的驅動狀態切換介面設計
論文名稱(外文):A State-Shifting Interface for Tool with Triple End-Effectors Independently Driven by Single Rotary Actuator
指導教授:陳達仁陳達仁引用關係
指導教授(外文):Dar-Zen Chen
口試委員:林柏廷吳宗明
口試委員(外文):Po-Ting LinTzong-Ming Wu
口試日期:2019-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:47
中文關鍵詞:多末端效應器單一旋轉致動驅動狀態切換介面
DOI:10.6342/NTU201903454
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在腹腔鏡手術中,端口(Port)的數量等同於手術中需同時使用的工具數量。為減少端口數量,單口腹腔鏡工具(Single-Port Laparoscopic Tool)就此誕生,然而在現存的單口腹腔鏡工具中,每一個末端效應器(End-Effector)都是由個別獨立的致動器所驅動的,雖然減少了端口數量卻增加了端口的尺寸。本文提供了一個切換介面,適用於具有三個末端效應器並以單一致動器獨立驅動的工具,藉由減少致動器數量來解決單口腹腔鏡工具中端口的尺寸被迫放大的問題。在現存的六十六個末端效應器中,有六十二個只進行單純旋轉運動且由旋轉致動器所驅動,因此本文著重於旋轉式末端效應器及旋轉致動器的討論。其中每一個末端效應器皆為雙向驅動且具有一個動作階段(Moving Stage)及一個抑制階段(Holding Stage),本文推導出一個具備動作階段及抑制階段的工具的拓樸構造。將各個末端效應器線性搭載在單個工具之上,以處於動作階段的末端效應器編號定義工具狀態(Tool State);將致動器置於動作階段之末端效應器的操作平面(Operating Plane),同時在其他末端效應器的操作平面中置入一個定位件(Fixer)與末端效應器結合。在切換工具狀態時,為調整操作手柄的位置以匹配下一個驅動的末端效應器,需要增加一個中立態(Neutral State)來切斷動力傳遞;將致動器由所有末端效應器的操作平面分離,並將定位件同時置入所有末端效應器的操作平面中。藉由將致動器及定位件在各個末端效應器的操作平面間移動以完成狀態切換介面,為使致動器及定位件在各個平行的平面間進行現行移動,本文以往復式的線性運動作為狀態切換介面的驅動方式。在實施例中,致動器及狀態切換介面應設於使用者端,本文以纜索系統(Wire System)傳遞由致動器產生的運動置末端效應器。其中使用了兩個獨立的纜索系統;一個用於驅動末端效應器的運動,另一則用以驅動狀態切換介面。本文提出了一個用於血管解剖的狀態切換介面的操作過程實施例。
In laparoscopic surgery, the number of ports equals to the number of tools used. To reduce the number of ports, single-port tools have been developed; however, each end-effector is still driven by an individual actuator. Single-port tools reduce the number but increase the size of ports. This thesis proposed an interface for tool equipped with triple end-effectors independently driven by single actuator to reduce the port size. Sixty-two over sixty-six of existing end-effectors are purely rotary and driven by rotary actuator, so this thesis focused on rotary end-effectors and rotary actuator. Each end-effector is dual-directional actuated and has a moving stage and a holding stage. A topology structure for tool with both moving stage and holding stage was derived. Triple end-effectors are linearly assembled on single tool and the tool state is defined by the number of end-effector in moving stage. Actuator exists in the operating planes of end-effectors in moving stage, and produce a fixer in all the other operating planes. To adjust the pose of trigger to match the pose of next-actuated end-effector when shifting states, a neutral state is desired. Separate the actuator from all the operating planes and make the fixer in all the operating planes. A state-shifting interface is proposed by linearly translating the actuator and fixer between the operating planes of the end-effectors. For linear translation between parallel planes, back-and-forth adjustment of the interface is assigned. Actuators and interface should be at the proximal side from the user. Use wire system to translate the motion from the actuator to the end-effector. Two independent wire system are used, one for actuating the end-effectors and the other for actuating of state-shifting interface. An operating process of the proposed tool to dissect a vessel is proposed.
Chapter 1 Introduction 1
1.1 Background 1
1.2 Related Works 2
1.3 Motivation 9
Chapter 2 Tool with Rotary End-Effectors 10
2.1 Classification of Existing End-Effectors by Motion Types 10
2.2 Stages of Rotary End-Effectors 14
2.3 Topology for Tool with Both Moving Stage and Holding Stage 14
Chapter 3 States-Shifting Interface 23
3.1 Linear Arrange Triple End-Effectors on Single Tool 23
3.2 Definition of Tool States by End-Effector Stage 25
3.3 Translate Actuator Between Operating Planes to Shift Tool State 26
3.4 Constraints of the Thicknesses of and the Intervals between Driving Gear, Fixer and End-Effectors 28
3.5 Back-and-Forth Adjusted Interface 31
Chapter 4 A Conceptual Design 32
4.1 Position Selection of Actuators and Interface 32
4.2 Configuration of Wire System for Actuating of End-Effectors 33
4.3 Configuration of Wire System for Actuating of State-Shifting Interface 35
4.4 Range of Motion and Necessary Port Size Compared with Existing Tools 36
4.5 Process of the Interface for an Example Task-Vessel Dissection 38
Chapter 5 Conclusions 41
References 44
[1]Bishoff, Jay T., and Louis R. Kavoussi. Atlas of Laparoscopic and Robotic Urologic Surgery E-Book. Elsevier Health Sciences, 2016.
[2]Hara, Masayasu, et al. "No inflammatory benefit obtained by single-incision laparoscopic surgery for right hemicolectomy compared with conventional laparoscopy." Surgery today 49.7 (2019): 621-628.
[3]Wang, Zi‐Han, et al. "Outcomes of single‐port gasless laparoscopic breast‐conserving surgery for breast cancer: An observational study." The breast journal 25.3 (2019): 461-464.
[4]Ren, Xianghai, et al. "Single-Incision Laparoscopic-Assisted Anorectoplasty Versus Three-Port Laparoscopy in Treatment of Persistent Cloaca: A Midterm Follow-up." Journal of Laparoendoscopic & Advanced Surgical Techniques 28.12 (2018): 1540-1547.
[5]Connell, M. B., R. Selvam, and S. V. Patel. "Incidence of incisional hernias following single-incision versus traditional laparoscopic surgery: a meta-analysis." Hernia 23.1 (2019): 91-100.
[6]Antoniou, Stavros A., et al. "Single-incision surgery trocar-site hernia: an updated systematic review meta-analysis with trial sequential analysis by the Minimally Invasive Surgery Synthesis of Interventions Outcomes Network (MISSION)." Surgical endoscopy 32.1 (2018): 14-23.
[7]EndoWrist®/Single-Site® Instrument & Accessory Catalog, September 2015
[8]Rassweiler, Jens J., et al. "Future of robotic surgery in urology." BJU international 120.6 (2017): 822-841.
[9]Ramirez, Daniel, Matthew J. Maurice, and Jihad H. Kaouk. "Robotic perineal radical prostatectomy and pelvic lymph node dissection using a purpose‐built single‐port robotic platform." BJU international 118.5 (2016): 829-833.
[10]Maurice, Matthew J., Daniel Ramirez, and Jihad H. Kaouk. "Robotic laparoendoscopic single-site retroperitioneal renal surgery: initial investigation of a purpose-built single-port surgical system." European urology 71.4 (2017): 643-647.
[11]Seeliger, Barbara, et al. "Enabling single-site laparoscopy: the SPORT platform." Surgical endoscopy (2019): 1-8.
[12]Seeliger, Barbara, et al. " Multidisciplinary applications of a new single port robotics platform."
[13]Rogers, Travis et al. " Multispecialty single port robotic technology applied in the live animal model: proof of concept."
[14]Simaan, Nabil, et al. "Lessons learned using the insertable robotic effector platform (IREP) for single port access surgery." Journal of robotic surgery 7.3 (2013): 235-240.
[15]Bajo, Andrea, et al. "Integration and preliminary evaluation of an insertable robotic effectors platform for single port access surgery." 2012 IEEE International Conference on Robotics and Automation. IEEE, 2012.
[16]Ding, Jienan, et al. "Design and coordination kinematics of an insertable robotic effectors platform for single-port access surgery." IEEE/ASME transactions on mechatronics 18.5 (2012): 1612-1624.
[17]Piccigallo, Marco, et al. "Design of a novel bimanual robotic system for single-port laparoscopy." IEEE/ASME Transactions On Mechatronics 15.6 (2010): 871-878.
[18]Petroni, Gianluigi, et al. "A novel intracorporeal assembling robotic system for single-port laparoscopic surgery." Surgical endoscopy 27.2 (2013): 665-670.
[19]Scott, Manzo, and Lisa Heaton. "Robotic surgical tool for pluggable end-effectors." U.S. Patent No. 9,144,452. 29 Sep. 2015.
[20]Manzo, Scott E., and Lisa W. Heaton. "Surgical systems with robotic surgical tool having pluggable end-effectors." U.S. Patent No. 9,526,560. 27 Dec. 2016.
[21]Manzo, Scott E. "Wristed robotic tool with replaceable end-effector cartridges." U.S. Patent No. 9,358,031. 7 Jun. 2016.
[22]Manzo, Scott. "Replaceable end-effector cartridges with cam mechanisms." U.S. Patent No. 9,693,794. 4 Jul. 2017.
[23]Manzo, Scott E., et al. "Medical instrument electronically energized using drive cables." U.S. Patent No. 9,204,923. 8 Dec. 2015.
[24]Williams, Matthew R. "Apparatus with two-piece end-effectors for robotic surgical tools." U.S. Patent No. 9,492,233. 15 Nov. 2016.
[25]Manzo, Scott E., and Lawrence Kerver. "Surgical instrument with end effector comprising jaw mechanism and translating component, and related methods." U.S. Patent No. 9,474,569. 25 Oct. 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top