跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/11 06:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳羽軒
研究生(外文):Yu Hsuan Wu
論文名稱:利用磁控共濺鍍後硫化法製備銅錫硫化物薄膜及海水製氫之探討
論文名稱(外文):Preparation of photoelectrochemical sea-water splitting using Cu-Sn-S thin films created via sulfurization of radio frequency magnetron co-sputtering of Cu-Sn metal precursors
指導教授:鄭光煒
指導教授(外文):K. W. Cheng
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:113
中文關鍵詞:Cu2SnS3射頻磁控濺鍍法薄膜半導體光觸媒
外文關鍵詞:Cu2SnS3SputteringThin film semiconductorPhotocatalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用射頻磁控共濺鍍法及後硫化法製備三元Cu-Sn-S薄膜於鈉玻璃與ITO玻璃上,先進行製程與燒結參數最佳化,調整並探討前驅物之不同[Cu]/[Cu+Sn]比對薄膜晶型結構、光學性質、光電化學性質的影響。
首先進行挑選出最佳燒結參數選擇,燒結參數以前驅物基板加熱溫度、基板持溫時間、後硫化燒結溫度與持溫時間等製備出樣品薄膜,將其進行X光繞射分析以及能量分散式X光元素分析來決定最佳燒結參數。最後決定採基板加熱溫度為160℃持溫60分鐘後,接著以三段式硫化燒結法(溫度為160℃持溫30分鐘-450℃持溫30分鐘-500℃持溫60分鐘)為最佳燒結製程參數。
由XRD分析可知,樣品隨[Cu]/[Cu+Sn]比增加,其晶相會產生相轉換: 由Cubic-Cu2SnS3, 轉換成Cubic-Cu2SnS3 /Orthorhombic- Cu4SnS4 ,再轉變為Orthorhombic-Cu4SnS4,且其主要特徵峰(111)會往低角度偏移, 由表面形態分析得知,薄膜成分為Cu-poor(樣品(A)、(B))時,表面緻密,但出現少許細小的孔洞,而觀察樣品(C)表面型態變為條狀晶體,為類似worm-like grains的結構;而隨著[Cu]/[Cu+Sn]的比例上升,樣品(D)~(E)則由條狀晶體逐漸消失,較大的晶粒逐漸變多,樣品(F)之表面又變回顆粒片狀。
由光學量測結果可得知,樣品薄膜的能隙值皆介於0.96~1.35eV之間;在電性分析中,所有樣品皆呈p-型半導體,且隨著[Cu]/[Cu+Sn]含量的增加,其載子濃度上升,且載子移動率隨之下降;光敏性的量測結果顯示,樣品(B)於0.5 M的K2SO4水溶液及1 M的NaCl水溶液中,施加-1.2V(vs. Ag/AgCl))的偏壓時,可得最高光敏電流分別為0.55和0.34mA/cm2。

In this study, ternary copper-tin-sulfide (Cu-Sn-S) semiconductor thin films were deposited on the soda-lime glass and indium-tin-oxide (ITO) coated glass substrates by using the sulfurization of radio frequency magnetron co-sputtering of Cu-Sn metal precursors. The effect of the [Cu]/[Cu+Sn] on the structural, and photoelectrochemical properties of the Cu-Sn-S samples were examined.
First, we discussed the temperature for the pre-annealing, and the effect of temperature profile of sulfurization process on the structural, and physical properties of the Cu-Sn-S thin films. Based on the XRD and EDAX results, we decided to use three stage sulfurization thermal treatment for the preparation of samples. In the first stage, the temperature was increased from room temperature to 160C with the rate of 3C/min. The temperature of second stage was increased from 160C to 450C with the rate of 9C/min. and finally the temperature of third stage was increased from 460C to 500 C with the rate of 9C/min., with a holding time of 30 minutes in the first and second stage, and 60 minutes in the third stage.
X-ray diffraction patterns of samples show that the phase of the samples change from Cubic-Cu2SnS3, Cubic-Cu2SnS3 /Orthorhombic- Cu4SnS4 , Orthorhombic-Cu4SnS4 phases with an increase in the [Cu]/[Cu+Sn] molar ratio in metal precursors , and the main peak for (111) crystal plane of samples shifted to lower angles. The FESEM images show that the surface of the samples are dense and compact in the Cu-poor samples (A and B). Sample (C), which contains the mixing phases of Cubic-Cu2SnS3 /Orthorhombic- Cu4SnS4, shows the worm-like grains microstructures. With an increase in the [Cu]/[Cu+Sn] molar ratio, the grain size of samples (D)~(F) becomes larger and better crystallinity. The direct band gaps of the films measured through UV-Vis spectroscopy were in the range of 0.96~1.35 eV.
From the Hall measurement results, all samples are p-type semiconductor. While increasing the [Cu]/[Cu+Sn] molar ratio, the carrier concentration increases and the mobility decreases. The maximum photoelectrochemical performance of the samples in aqueous 0.5 M K2SO4 solution and 1 M NaCl were 0.55 and 0.34mA/cm2 with an external potential of -1.2 V vs. an Ag/AgCl reference electrode.

目錄
指導教授推薦書
口試委員會審定書
致謝 iii
摘要 v
Abstract vii
目錄 ix
圖目錄 xii
表目錄 xvi
第一章 緒論 1
1-1 前言 1
1-2 產氫技術現況 3
1-3 研究動機 6
第二章 基礎理論與文獻回顧 7
2-1 半導體簡介 7
2-1-1半導體電化學性質 10
2-2 半導體光觸媒 11
2-2-1 光觸媒之電化學分解水原理 11
2-2-2 半導體光觸媒材料與應用 14
2-3 I-IV-VI族三元化合物半導體簡介 16
2-4 濺鍍概論 17
2-4-1電漿原理 17
2-4-2直流濺鍍(Direct Current Sputtering, D.C. Sputtering) 18
2-4-3射頻濺鍍(Radio frequency Sputtering, R.F. Sputtering) 19
2-4-4 磁控濺鍍(Magnetron sputtering) 21
第三章 研究方法及實驗步驟 22
3-1 實驗材料 22
3-1-1 實驗靶材 22
3-1-2 實驗氣體 22
3-1-3 實驗基材 22
3-1-4 實驗藥品 22
3-2 實驗設備 23
3-3 分析儀器 25
3-4 實驗流程 27
3-4-1 基材準備及清洗 27
3-4-2 銅錫金屬前驅物薄膜比例計算 27
3-4-3 銅錫金屬前驅物製備 30
3-4-5 銅錫金屬前驅物硫化製程 32
3-4-6 薄膜性質分析 34
第四章 結果與討論 40
4-1 實驗參數最佳化 40
4-1-1 前驅物基板加熱溫度選擇 40
4-1-2 決定金屬前驅物薄膜之基板加熱時間 42
4-1-3 最適燒結溫度挑選 42
4-1-4 不同持溫時間變化 45
4-2 晶型結構分析 47
4-2-1 薄膜晶型結構分析 47
4-3 薄膜成分及膜厚分析 49
4-4 表面型態分析 52
4-4-1 場發射掃描式電子顯微鏡 52
4-4-2 原子力顯微鏡 57
4-5 光學性質分析 61
4-5-1 薄膜穿透率與反射率 61
4-5-2 薄膜直接能隙值 63
4-6 電學性質分析 65
4-7薄膜光電化學性質分析 67
4-7-1 交流阻抗分析 67
4-7-2 Mott-Schottky分析 69
4-7-3 光敏電流量測 72
4-7-3-1 以0.5M K2SO4水溶液作為電解質溶液 72
4-7-3-2 以1M NaCl作為電解質溶液 77
4-7-4 薄膜穩定性測試 81
4-7-5入射光量子轉換效率(IPCE) 83
第五章 結果與未來展望 85
參考文獻 87


圖目錄
圖1-1 我國燃料燃燒CO2 排放量與人均排放趨勢圖。 3
圖1-2台灣能源總消耗比例圖。 3
圖1-3 產氫技術途徑與方法。 5
圖2-1 半導體特性比較。 9
圖2-2 n型半導體與水溶液界面的空間電荷層與能帶彎曲理論。 10
圖2-3 Honda-Fujishima所開發之n-type TiO2光電化學反應裝置。 12
圖2-4半導體光電化學反應機制示意圖。 13
圖2-5常見的半導體材料光觸媒能帶結構圖。 15
圖2-6 CZTS之三元合金相圖。 17
圖2-7直流濺鍍裝置圖。 19
圖2-8 射頻濺鍍裝置圖。 20
圖2-9 磁控濺鍍示意圖。 21
圖3-1 實驗設備簡圖。 24
圖3-2 光電化學反應裝置 (A:300W 氙燈,B:工作電極,C:參考電極,D:輔助電極,E:循環冷卻水,F:恆電位儀,G:磁石攪拌器) 。 26
圖3-3 硫化燒結程序圖。 32
圖3-4 實驗流程圖。 33
圖4-1 Cu-Sn合金相圖。 41
圖4-2 不同基板加熱溫度之薄膜前驅物之XRD圖。 41
圖4-3 不同基板加熱時間之薄膜前驅物之XRD圖。 42
圖4-4 不同硫化溫度之XRD圖。 43
圖4-5 不同硫化燒結持溫時間之XRD圖譜。 45
圖4-6 樣品(A)~(F)之XRD分析圖譜。 48
圖4-7 樣品(A)~(F)之XRD分析圖譜(2θ=25°~ 30°) 。 48
圖4-8 前驅物[Cu]/[Cu+Sn]與樣品[Cu]/[Cu+Sn]、[2S]/(Cu+4Sn)關係圖。 51
圖4-9 樣品(A)之FESEM正面圖(10K(X)與20K(X))。 53
圖4-10 樣品(B)之FESEM正面圖(10K(X)與20K(X))。 53
圖4-11 樣品(C)之FESEM正面圖(10K(X)與20K(X))。 53
圖4-12 樣品(D)之FESEM正面圖(10K(X)與20K(X))。 54
圖4-13 樣品(E)之FESEM正面圖(10K(X)與20K(X))。 54
圖4-14 樣品(F)之FESEM正面圖(10K(X)與20K(X))。 54
圖4-15 樣品(A)之FESEM側面圖(12K(X)與20K(X))。 55
圖4-16 樣品(B)之FESEM側面圖(12K(X)與20K(X))。 55
圖4-17 樣品(C)之FESEM側面圖(12K(X)與20K(X))。 55
圖4-18 樣品(D)之FESEM側面圖(12K(X)與20K(X))。 56
圖4-19 樣品(E)之FESEM側面圖(12K(X)與20K(X))。 56
圖4-20 樣品(F)之FESEM側面圖(12K(X)與20K(X))。 56
圖4-21 樣品(A)之AFM圖。 58
圖4-22 樣品(B)之AFM圖。 58
圖4-23 樣品(C)之AFM圖。 59
圖4-25 樣品(E)之AFM圖。 60
圖4-26 樣品(F)之AFM圖。 60
圖4-27 樣品(A)~(F)之穿透圖譜。 62
圖4-28 樣品(A)~(F)之反射圖譜。 62
圖4-29 樣品(A)~(F)之(αhν)2對hν能隙圖。 63
圖4-30樣品中[Cu]/[Cu+Sn]成分比對能隙值的關係。 64
圖4-31 試片中[Cu]/[Cu+Sn]成分比對載子濃度與載子移動率的影響。 66
圖4-32 樣品(A)~(F)於-1V、0V、及1V下之交流阻抗圖。 68
圖4-33 在0.5M K2SO4水溶液中之Mott-Schottky量測。 70
圖4-34 樣品(A)~(F)於在0.5M K2SO4水溶液中之能帶位置圖。 71
圖4-35 樣品(A)在0.5 M的K2SO4水溶液之光電流。 74
圖4-36 樣品(B)在0.5 M的K2SO4水溶液之光電流。 74
圖4-37 樣品(C) 在0.5 M的K2SO4水溶液之光電流。 75
圖4-38 樣品(D)在0.5 M的K2SO4水溶液之光電流。 75
圖4-39 樣品(E)在0.5 M的K2SO4水溶液之光電流。 76
圖4-40 樣品(F)在0.5 M的K2SO4水溶液之光電流。 76
圖4-41 樣品(A)在1M NaCl水溶液之光電流。 78
圖4-42 樣品(B)在1M NaCl水溶液之光電流。 79
圖4-43 樣品(C)在1M NaCl水溶液之光電流。 79
圖4-44 樣品(D)在1M NaCl水溶液之光電流。 80
圖4-45 樣品(E)在1M NaCl水溶液之光電流。 80
圖4-46 樣品(F)在1M NaCl水溶液之光電流。 81
圖4-47 樣品(B)在0.5M K2SO4水溶液與1M NaCl水溶液中於-1.1V下之電流-時間比較圖。 82
圖4-48樣品(B)、(D)在0.5M K2SO4水溶液中於-1.1 V下之IPCE效率圖 84


表目錄
表3-1 本研究中錫靶材之濺渡率 28
表3-2 本研究中銅靶材之濺渡率 29
表3-3 樣品(A)~(F)之製程參數 30
表4-1 樣品(A)~(F)金屬前驅物薄膜之元素組成 50
表4-2 樣品(A)~(F)硫化後薄膜之元素組成 50
表4-3金屬前驅物薄膜與硫化後薄膜厚度分析 51
表4-4 樣品(A)~(F)之成分比、直接能隙與膜厚關係 64
表4-5樣品(A)~(F)之霍爾效應量測 66
表4-6樣品(A)~(F)之能帶結構分析 70
表4-7 樣品(A)~(F)之[Cu]/[Cu+Sn]比率對於0.5 M的K2SO4水溶液光電流值整理表 73
表4-8樣品(A)~(F)之[Cu]/[Cu+Sn]比率對於1M NaCl水溶液光電流值整理表 78


[1] 經濟部能源局(Bureau of Energy, Ministry of Economic Affairs),我國燃料燃燒二氧化碳排放統計,2015。
[2] 台灣電力公司,再生能源發展概況,台電系統發電量占比,2016。
[3] 中文網站,綠色產業(太陽能產業聚落),網址: http://gsp.stsipa. gov.tw/solar.html,科技部南部科學工業園區管理局。
[4] 林明獻,<太陽電池技術入門>,第二版,全華圖書出版社,2008年。
[5] 吳晟, 明日綠色能源之星─氫能源, 經濟部能源局, 2004
[6] “能源科技研究發展-氫能源”,pp. 204-220,2007。
[7] Alain Bugat, “Future Means of Hydrogen Production,”17th WHEC,Lyon, France, 13-16 June, 2006.
[8] A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238 , pp. 37–38, 1972.
[9] T.A. Kuku, O.A. Fakolujo, Photovoltaic characteristics of thin films of Cu2SnS3, Sol. Energy Mater. 16 (1987) 199–204.
[10] N. Aihara, H. Araki, A. Takeuchi, K. Jimbo, H. Katagiri, Fabrication of Cu2SnS3 thin films by sulfurization of evaporated Cu–Sn precursors for solar cells, Phys. Status Solidi C 10 (2013) 1086–1092.
[11] S. Fiechter, M. Martinez, G. Schmidt, W. Henrion and Y. Tomm, "Phase relations and optical properties of semiconducting ternary sulfides in the system Cu–Sn–S." J. Phys. Chem. Solids, 64, p.1859-1862, 2003.
[12] M. Bouaziz, M. Amlouk and S. Belgacem, "Structural and optical properties of Cu2SnS3 sprayed thin films." Thin Solid Films, 517, p.2527-2530, 2009.
[13] D. Tiwari, T.K. Chaudhuri, T. Shripathi, U. Deshpande, R. Rawat, Non-toxic, earth-abundant 2% efficient Cu2SnS3 solar cell based on tetragonal films directcoated from single metal–organic precursor solution, Sol. Energy Mater. Sol. Cells 113 (2013) 165-170.
[14] T.A. Kuku, O.A. Fakolujo, Sol. Energy Mater 16 (1987) 199-204.
[15] J. Koike, K. Chino, N. Aihara, “Cu2SnS3 thin-fim solar cells from electroplated precursors.” Japanese Journal of Applied Physics, vol. 51, no. 10, pp. 10NC34–10NC34-3, 2012.
[16] A. Kanai, K. Toyonaga, K. Chino, H. Katagiri, H. Araki, “Fabrication of Cu2SnS3 thin-film solar cells with power conversion efficiency of over 4%.” Jpn. J. Appl. Phys. 54 (2015) 08KC06.
[17] 孫允武,半導體概論 半導體物理簡介,中興物理。
[18] 孫允武,半導體概論 應用電子學,中興物理。
[19] 中文網站,半導體 第21章講義,網址:http://www.edtung.com /Files/第21章講義。
[20] UПлесков, Ю.ВU,《半導體光電化學》,彭瑞伍譯,科學出版,1989年。
[21] A. L. Linsebigler, J. T. Yates Jr, G. Lu, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chem. Rev., vol. 95, pp. 735–758, 1995.
[22] 中文網站: https://zh.wikipedia.org/wiki/光觸媒。
[23] Kudo, A ; Miseki, Y , "Heterogeneous photocatalyst materials for water splitting ." Chemical Society Reviews 2009, 38,(1), 253-278.
[24] A. Fujishima, T. N. Rao, and D. A. Tryk, "Titanium dioxide photocatalysis." J. Photochem. Photobiol C: Photochemistry Reviews, 1, p.1-21, 2000.
[25] Maeda, K. ; Domen, K., "New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light." Journal of Physical Chemistry C 2007, 111, (22), 7851-7861.
[26] 蔡智文, 神氣活現—台灣大學水分解產氫研究, 經濟部能源局, 2009。
[27] M. Grätzel, "Photoelectrochemical cells." Nature, 414, p.338-344, 2001.
[28] A. D. Compaan, "Photovoltaics: Clean power for the 21st century." Sol. Energy Mater. Sol. cells, 90, p.2170-2180, 2006.
[29] Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y., Mitzi, D. B. (2014).Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Adv. Energy Mater., 4: 1301465. doi: 10.1002/aenm.201301465.
[30] Q. Zhang, M. Cao, W. S. Gao, J. Yang , J. S. Shen , J. Huang , Y. Sun ,L. J. Wang , Y. Shen, "Phase-selective and photoactivity investigation of solvothermal synthesized Cu2ZnSnS4 nanoparticles." Materials and Design 91 (2016) 37–45.
[31] K.-W. Cheng, W.-T. Tsai, Y.-H. Wu,"Photo-enhanced salt-water splitting using orthorhombic Ag8SnS6 photoelectrodes in photoelectrochemical cells." Journal of Power Sources 317 (2016) 81-92.
[32] Scragg, J. J.: "Studies of Cu2ZnSnS4 films prepared by sulphurisation of electrodeposited precursors." University of Bath, Diss., 2010 .
[33] 願鄂寧。2014。溶膠—凝膠法製備銅鋅錫硫(Cu2ZnSnS4)和銅錫硫(Cu2SnS3)薄膜太陽電池。碩士論文。中南大學。冶金與環境學院。湖南省。
[34] Y. Wang, J. Li, C. Xue, Y. Zhang, G. Jiang, W. Liun , C. Zhu," Investigation of the sulfurization process of Cu2SnS3 thin films with stacked layers CBD-Cu/SnS by rapid thermal process." Materials Letters 178 (2016) 104–106.
[35] A. C. Lokhande, S.A. Pawar, E. Jo, M. He, A. Shelke, C.D. Lokhande, J. H. Kimet , "Amines free environmentally friendly rapid synthesis of Cu2SnS3 nanoparticles." Optical Materials 58 (2016) 268-278.
[36] U. Chalapathi, B. Poornaprakash, S.-H. Parket, "Growth and properties of co-evaporated Cu2SnS3 thin films for solar cell applications." Vacuum 131 (2016) 22-27.
[37] Y. Dong, J. He, X. Li, Y. Chen, L. Sun, P. Yang, J. Chu, "Stud y on the preheating duration of Cu2SnS3 thin films using RF magnetron sputtering technique for photovoltaics. " Journal of Alloys and Compounds 665 (2016) 69-75.
[38] S.A. Vanalakar, G.L. Agawane, A.S. Kamble, C.W. Hong, P.S. Patil, J.H. Kim, "Fabrication of Cu2SnS3 thin film solar cells using pulsed laser deposition technique." Sol. Energy Mater. Sol. Cells 138 (2015) 1-8.
[39] H. Dahman, S. Rabaoui, A. Alyamani, L. El Mir, "Structural, morphological and optical properties of Cu2SnS3 thin film synthesized by spin coating technique." Vacuum 101 (2014) 208-211.
[40] U. Chalapathi, Y. Jayasree, S. Uthanna, V. Sundara Raja, "Effect of annealing temperature on the properties of spray deposited Cu2SnS3 thin films." Phys. Status Solidi A 210 (2013) 2384-2390.
[41] 田波民, “《薄膜技術與薄膜材料》,初版.” 全華圖書, 2007。
[42] 羅吉宗, “《薄膜技術與應用》,二版.” 全華圖書, 2009。
[43] 國外網站,網址:http://marriott.tistory.com/97,上網日期: 2011-09-16。
[44] Hauser, Hans Chabicovsky, Rupert Riedling, Karl, 2002, Handbook of Thin Films. Volume 5, 375-437. San Francisco : Academic Press.
[45] 反應性射頻磁控濺鍍原理,網址: http://eshare.stust.edu. tw/EshareFile/2009_11/2009_11_13e6f13f,2009。
[46] 李正中, “《薄膜光學與鍍膜技術》,五版.” 藝軒圖書, 2006。
[47] J. C. Manifacier, M. De Murcia, J. P. Fillard and E. Vicario, "Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their crystalline structure." Thin Solid Films, 41, p. 127-135, 1977.
[48] J. I. Pankove, 《Optical processes in semiconductors》, Prentice-Hall, Englewood Cliffs, 1971.
[49] J. Akikusa, S. U. M. Khan, "Photoresponse and AC Impedance Characterization of n-TiO2 Films during Hydrogen and Oxygen Evolution Reactions in an Electrochemical Cell. " Int. J. Hydrogen Energy, vol. 22, pp. 875–882, 1997.
[50] M. Radecka, K. Zakrzewska, M. Wierzbicka, A. Gorzkowska, S. Komornicki, "Study of the TiO2-Cr2O3 system for photoelectrolytic decomposition of water." in Solid State Ionics, 2003, vol. 157, pp. 379–386.
[51] R. Loef, A. J. Houtepen, E. Talgorn, J. Schoonman, A. Goossens, "Study of electronic defects in CdSe quantum dots and their involvement in quantum dot solar cells." Nano Lett., vol. 9, pp. 856–859, 2009.
[52] N. Naghavi, R. Henriquez, V. Laptev, D. Lincot, "Growth studies and characterisation of In2S3 thin films deposited by atomic layer deposition (ALD)." Appl. Surf. Sci., vol. 222, pp. 65–73, 2004.
[53] K. Gelderman, L. Lee, S. W. Donne, "Flat-Band Potential of a Semiconductor: Using the Mott–Schottky Equation." J. Chem. Educ., vol. 84, p. 685, 2007.
[54] W. J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, K. Domen, "Conduction and valence band positions of Ta2O5, TaOn, and Ta3N5 by UPS and electrochemical methods." J. Phys. Chem. B, vol. 107, pp. 1798–1803, 2003.
[55] M. Tan, B. Xiufang, X. Xianying, B. Sun, "Correlation between viscosity of molten Cu–Sn alloys and phase diagram." Physica B 387 (2007) 1–5.
[56] H. Zhang, M. Xie, S. Zhang ,Y. Xiang, "Fabrication of highly crystallized Cu2SnS3 thin films through sulfurization of Sn-rich metallic precursors."Journal of Alloys and Compounds 602 (2014) 199–203.
[57] M. G. Sousa, A. F. da Cunha, P. A. Fernandes,"Annealing of RF-magnetron sputtered SnS2 precursors as a new route for single phase SnS thin films." J. Alloys Compd., vol. 592, pp. 80–85, 2014.
[58] Y. Dong J. He, L. Sun, Y. Chen, P. Yang, J. Chu,"Effect of sulfurization temperature on properties of Cu2SnS3 thin films and solar cells prepared by sulfurization of stacked metallic precursors." Materials Science in Semiconductor Processing 38 (2015) 171 –176.
[59] "JCPDS No. 72-31, Powder Diffration File, Joint Commiteeon Powder Diffraction Standard, ASTM." p. Newtown Square, PA, USA, 2014.
[60] "JCPDS No. 53-522, Powder Diffration File, Joint Commiteeon Powder Diffraction Standard, ASTM." p. Newtown Square, PA, USA, 2014.
[61] "JCPDS No. 27-900, Powder Diffration File, Joint Commiteeon Powder Diffraction Standard, ASTM." p. Newtown Square, PA, USA, 2014.
[62] "JCPDS No. 65-3561, Powder Diffration File, Joint Commiteeon Powder Diffraction Standard, ASTM." p. Newtown Square, PA, USA, 2014.
[63] Z. H. Su, K. W. Sun, Z.L. Han, F.Y. Liu, Y.Q. Lai, J. Li and Y.X. Liu, "Fabrication of ternary Cu–Sn–S sulfides by a modified successive ionic layer adsorption and reaction (SILAR) method." J. Mater. Chem., 22, p.16346-16352, 2012.
[64] "JCPDS No. 89-2877, Powder Diffration File, Joint Commiteeon Powder Diffraction Standard, ASTM." p. Newtown Square, PA, USA, 2014.
[65] J. M., "Cowley, Diffraction Physics, 4 ed.: Elsevier Science B.V." 1990.
[66] Klein & Hulburt, Manual of Mineralogy 20th edition, 1985, 160-161.
[67] A.C. Lokhande, R.B.V. Chalapathy, M. He, E. Jo, M. Gang , S.A. Pawar ,C.D. Lokhande, J. H. Kim, "Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: A status review." Solar Energy Materials & Solar Cells 153 (2016) 84–107.
[68] U. Chalapathi, Y. Jayasree, S. Uthanna, V. S. Raja. , "Effect of annealing on the structural, microstructural and optical properties of co-evaporated Cu2SnS3 thin films." Vacuum 117 (2015) 121-126.
[69] V. P. Geetha Vani, M. Vasudeva Reddy,K. T. Ramakrishna Reddy, "Thickness-Dependent Physical Properties of Coevaporated Cu4SnS4 Films." ISRN Condensed Matter Physics Volume 2013, Article ID 142029.
[70] J. Li, H. Zhao, X. Chen, H. Jia, Z. Zheng, "In situ fabricate Cu2S thin film with hierarchical petal-like nanostructures. "Materials Research Bulletin 48 (2013) 2940–2943.
[71] Baranowski, Lauryn L. "Evaluation of Photovoltaic Materials within the Cu-Sn-S Family."Applied Physics Letters 103.25 (2013).
[72] A. S. Brewer, M. S. Arnold, "Field-effect measurements of mobility and carrier concentration of Cu2S colloidal quantum dot thin films after ligand exchange. "Thin Solid Films 567 (2014) 91–95.
[73] 李朝晖, 2014.一種產氫光催化劑MoS2/ZnIn2S4及其製備方法, 中華人民共和國發明專利第.103071513號。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊