跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯宣任
研究生(外文):HOU,SYUAN-REN
論文名稱:親水性高分子混摻蛋黃油複合薄膜應用於慢性傷口修復之研究
論文名稱(外文):Evaluation of Composite Film of Hydrophilic Polymer Blended with Egg-Yolk Oil for Chronic Wound Healing
指導教授:張振榮張振榮引用關係謝淑枝
指導教授(外文):CHANG,CHEN-JUNGSHIEH,SHU-CHIH
口試委員:黃文濤湯正明謝淑枝劉百栓張振榮
口試委員(外文):HUANG,WEN-TAOTANG,CHENG-MINGSHIEH,SHU-CHIHLIU,BAI-SHUANCHANG,CHEN-JUNG
口試日期:2019-07-12
學位類別:碩士
校院名稱:中臺科技大學
系所名稱:醫學影像暨放射科學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:153
中文關鍵詞:幾丁聚醣明膠聚乙烯吡咯烷酮薄膜蛋黃油
外文關鍵詞:ChitosanGelatinPolyvinylpyrrolidonefilmEgg yolk oil
相關次數:
  • 被引用被引用:0
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討聚乙烯吡咯烷酮(Polyvinyl pyrrolidone, PVP )/明膠(Gelatin)/幾丁聚醣(Chitosan)/混摻蛋黃油(Egg Yolk Oil, EYO) 透過戊二醛(Glutaraldehyde, GA)蒸氣交聯製備複合薄膜(簡稱PGC/EYO薄膜),評估含不同比重蛋黃油之PGC/EYO薄膜其吸水後薄膜性質、機械性質、生物降解度、生物相容性,最後,最適PGC/EYO薄膜試驗於大鼠放射性皮炎(Radiodermatitis)之治療效果。
第一階段試驗不同P:G:C比例之薄膜(簡稱PGC薄膜),選擇最適合之薄膜基材混摻EYO,其中PGC薄膜比例為1:1:2之薄膜(簡稱PGC112)表現柔軟、有韌性的機械性質且具有穩定的生物降解度,故第二階段欲選擇PGC112混摻EYO製備複合薄膜。
第二階段試驗將EYO以0.25及0.50 wt%混摻於PGC薄膜中,結果顯示含水率皆維持在92%以上,隨著EYO比重增加,薄膜性質越接近PGC/0EYO薄膜;混摻EYO後機械性質整體提升,其中PGC/0.5EYO薄膜具有較佳的延伸率及楊氏模數。ATR-FTIR分析可見因添加EYO而產生新的酯類特徵波峰分別在1744及2926 cm-1。EYO微粒於PGC/EYO薄膜情形由FE-SEM觀察,以PGC/0.5EYO最為顯著。生物相容性實驗中,PGC/EYO薄膜對老鼠成纖維母細胞(L929 cells)於第3天減緩增殖速度,評估後PGC/0.5EYO具有較佳的機械性質、合適的降解性質及生物相容性,選擇其應用於放射性皮炎治療之動物實驗。
最後階段,給予大鼠背部40 Gy使之產生第Ⅲ級放射皮炎,傷口處理30天,結果表明蛋黃油對於放射性皮炎有顯著的修復效果,PGC/0EYO薄膜能夠延遲皮炎發生時間,PGC/0.5EYO具有有良好的放射性皮炎修復能力,組織學表徵觀察到良好的再上皮化,CD68標記物也有顯著降低,具備延遲及修復放射性皮炎之功效。

In this study, we investigated Polyvinylpyrrolidone (PVP)/Gelatin/Chitosan /Egg Yolk Oil (EYO) to prepare composite film (called PGC/EYO film) which cross-linked by glutaraldehyde (GA) vapor, and evaluated film properties after water absorption, mechanical properties, biodegradability, biocompatibility. Finally, evaluating treatment effect of radiodermatitis in rats with the ideal PGC/EYO film .
The first part, the films of different P:G:C ratio (called PGC film) was tested to select the ideal ratio of the film which would blend with EYO. The appropriate ratio of PGC film is 1:1:2 (called PGC112) which has soft and tough mechanical properties, and stable biodegradability. Therefore, PGC112 film would blend with EYO to prepare composite film .
In the second part, the PGC film would blend with 0.25 and 0.50wt% EYO. The results show that the water content rates all high over 92%. With the EYO increased, the mechanical properties of the PGC/EYO film are improved overall, and the PGC/0.5EYO film has the best elongation and Young's modulus. ATR-FTIR analysis shows that the appearance of new peak by adding EYO. The peaks are observed in FE-SEM at 1744 and 2926 cm-1. Observing EYO micro-particles in the PGC/EYO film by FE-SEM, and the most EYO micro-particles distribute over the surface and section of PGC/0.5EYO film. The biocompatibility experiment shows PGC/EYO film has reduction of the proliferation rate of mouse fibroblasts cells (L929 cells) on the third day. After evaluation, PGC/0.5EYO has the ideal mechanical properties, biodegradation and biocompatibility. According to the above results, Selecting PGC/0.5EYO film for the treatment of radiodermatitis.
The final part, Giving 40 Gy to the back of the rats to produce the grade III radiation dermatitis and the wound was treated for 30 days. The results showed that the EYO has a significantly healing effect on radiation dermatitis, and the PGC/0EYO film was able to delay the occurrence of dermatitis. PGC/0.5EYO has a significantly healing effect on radiodermatitis, good re-epithelialization which observed in histological characterization, CD68 reduced significantly, and the effect of delaying and healing radiodermatitis.

誌謝 I
摘要 III
Abstract IV
圖目錄 XI
表目錄 XIV
第一章 前言 1
1-1研究動機 1
1-2研究目的 2
第二章 文獻回顧 4
2-1皮膚構造 4
2-1-1傷口發炎反應 5
2-1-2皮膚傷口修復機制 7
2-2 傷口敷料演進 9
2-3 放射線治療簡介 11
2-3-1 放射線治療之生物效應 12
2-3-2放射性皮炎護理方式 14
2-4 複合薄膜敷料之材料 16
2-4-1 聚乙烯吡咯烷酮 (Polyvinyl pyrrolidone, PVP) 16
2-4-2 明膠 (Gelatin) 18
2-4-3 幾丁聚醣 (Chitosan) 20
2-4-4 蛋黃油(Egg Yolk Oil, EYO) 22
2-5 複合型材料於皮膚組織工程之應用 26
2-5-1 Chitosan/Polyvinyl pyrrolidone (PVP) 26
2-5-2 Gelatin/PVP 27
2-5-3 Chitosan/ Gelatin 28
2-5-4 高分子材料/蛋黃油 29
2-6 幾丁聚醣-明膠與戊二醛交聯機制 31
第三章 材料與方法 34
3-1 實驗藥品 34
3-2 實驗儀器 36
3-3 實驗流程 39
3-3-1 PGC薄膜最適比例選擇與薄膜性質評估 39
3-3-2 PGC/EYO薄膜之性質評估 40
3-3-3 放射皮炎動物實驗流程 41
3-4 實驗方法 42
3-4-1 PGC薄膜製備與交聯 42
3-4-2 PGC薄膜結構穩定性測試及評估 44
3-4-2-1 PGC薄膜交聯度測試 44
3-4-2-2製備磷酸鹽緩衝溶液(Phosphate buffer saline, PBS) 45
3-4-2-3 PGC薄膜降解率測試 45
3-4-2-4 PGC薄膜機械性能測試 - 拉伸測試 46
3-4-2-5 ATR-FTIR測試 46
3-4-3 PGC/EYO複合薄膜之製備與性能評估 47
3-4-3-1 PGC/EYO複合薄膜之製備 47
3-4-3-2 PGC/EYO薄膜之性質測試 49
3-4-3-3 PGC/EYO薄膜之ATR-FTIR測試 49
3-4-3-4 PGC/EYO 生物降解度測試 49
3-4-3-5 PGC/EYO薄膜之機械性能測試 - 拉伸測試 50
3-4-3-6 PGC/EYO薄膜表徵顯微結構觀察 50
3-4-3-7 PGC薄膜表面粒徑分析 51
3-4-4 PGC-EYO複合薄膜生物相容性測試 52
3-4-4-1 細胞培養液之配置 52
3-4-4-2 L929細胞培養與繼代方法 53
3-4-4-3 體外細胞活性測試 54
3-4-4-4 亞甲基藍(Methylene blue)染色觀察 55
3-4-5 放射皮炎動物實驗 56
3-4-5-1 Sprague Dawley大鼠之飼養 56
3-4-5-2 放射皮炎產生方法 56
3-4-5-3 放射皮炎面積分析 63
3-4-5-4 放射皮炎傷口組織切片 63
3-5 統計分析 65
第四章 結果與討論 66
4-1 PGC薄膜之評估 66
4-1-1 不同比例之PGC薄膜性質評估 66
4-1-2 不同比例之PGC薄膜ATR-FTIR分析 72
4-1-3 不同比例之PGC薄膜機械性能分析-拉伸測試 75
4-1-4 不同比例之PGC薄膜生物降解度測試 78
4-2 PGC/EYO薄膜之評估 80
4-2-1 PGC/0EYOPGC/EYO薄膜ATR-FTIR分析 80
4-2-2 PGC/0EYO及PGC/EYO薄膜性質評估 82
4-2-3 PGC/0EYO及PGC/EYO薄膜之機械性質測試 89
4-2-4 PGC/0EYO及PGC/EYO薄膜之生物降解度測試 93
4-2-5 PGC/0EYO及PGC/EYO薄膜之FE-SEM觀察 95
4-2-6 PGC/EYO薄膜之粒徑分析 98
4-2-7 PGC/EYO薄膜之體外細胞測試 102
4-3放射皮炎動物實驗 106
4-3-1放射皮炎面積之比較 106
4-3-2放射皮炎動物實驗-H&E切片染色觀察 113
4-3-3放射皮炎動物實驗- CD68免疫切片染色觀察 119
第五章 結論 124
參考文獻 127
附錄一 138


[1]R. A. Kamel, J. F. Ong, E. Eriksson, J. P. E. Junker, and E. J. Caterson, “Tissue Engineering of Skin,” Journal of the American College of Surgeons, vol. 217, no. 3, pp. 533–555, Sep. 2013.
[2]G. Lan et al., “Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent,” Colloids and Surfaces B: Biointerfaces, vol. 136, pp. 1026–1034, Dec. 2015.
[3]F. Rastegar, N. Azarpira, M. Amiri, and A. Azarpira, “The Effect of Egg Yolk Oil in the Healing of Third Degree Burn Wound in Rats,” vol. 13, p. 6, 2011.
[4]C. Alemdaroğlu, Z. Değim, N. Çelebi, F. Zor, S. Öztürk, and D. Erdoğan, “An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor,” Burns, vol. 32, no. 3, pp. 319–327, May 2006.
[5]E. Yenilmez et al., “Chitosan gel formulations containing egg yolk oil and epidermal growth factor for dermal burn treatment,” Pharmazie, no. 2, pp. 67–73, Feb. 2015.
[6]A. D. Metcalfe and M. W. J. Ferguson, “Bioengineering skin using mechanisms of regeneration and repair,” Biomaterials, vol. 28, no. 34, pp. 5100–5113, Dec. 2007.
[7]J. Li, J. Chen, and R. Kirsner, “Pathophysiology of acute wound healing,” Clinics in Dermatology, vol. 25, no. 1, pp. 9–18, Jan. 2007.
[8]S. Ding, K. L. W. Walton, R. E. Blue, K. MacNaughton, S. T. Magness, and P. K. Lund, “Mucosal Healing and Fibrosis after Acute or Chronic Inflammation in Wild Type FVB-N Mice and C57BL6 Procollagen α1(I)-Promoter-GFP Reporter Mice,” PLoS ONE, vol. 7, no. 8, p. e42568, Aug. 2012.
[9]S. Enoch and D. J. Leaper, “Basic science of wound healing,” p. 7, 2007.
[10]F. Momm, C. Weißenberger, S. Bartelt, and M. Henke, “Moist Skin Care Can Diminish Acute Radiation-Induced Skin Toxicity,” Strahlentherapie und Onkologie, vol. 179, no. 10, pp. 708–712, Oct. 2003.
[11]L. Fan, H. Yang, J. Yang, M. Peng, and J. Hu, “Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings,” Carbohydrate Polymers, vol. 146, pp. 427–434, Aug. 2016.
[12]G. Rassu, A. Salis, E. P. Porcu, P. Giunchedi, M. Roldo, and E. Gavini, “Composite chitosan/alginate hydrogel for controlled release of deferoxamine: A system to potentially treat iron dysregulation diseases,” Carbohydrate Polymers, vol. 136, pp. 1338–1347, Jan. 2016.
[13]M. Risbud, A. Hardikar, and R. Bhonde, “Growth modulation of fibroblasts by chitosan-polyvinyl pyrrolidone hydrogel: Implications for wound management?,” Journal of Biosciences, vol. 25, no. 1, pp. 25–30, Mar. 2000.
[14]J. Fisher et al., “Randomized phase III study comparing best supportive care to biafine as a prophylactic agent for radiation-induced skin toxicity for women undergoing breast irradiation: Radiation therapy oncology group (RTOG) 97-13,” International Journal of Radiation Oncology*Biology*Physics, vol. 48, no. 5, pp. 1307–1310, Dec. 2000.
[15]N. Salvo et al., “Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature,” Current Oncology, vol. 17, no. 4, Jul. 2010.
[16]J. Richardson, J. E. Smith, M. McIntyre, R. Thomas, and K. Pilkington, “Aloe Vera for Preventing Radiation-induced Skin Reactions: A Systematic Literature Review,” Clinical Oncology, vol. 17, no. 6, pp. 478–484, Sep. 2005.
[17]J. D. Cox, J. Stetz, and T. F. Pajak, “Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European organization for research and treatment of cancer (EORTC),” International Journal of Radiation Oncology*Biology*Physics, vol. 31, no. 5, pp. 1341–1346, Mar. 1995.
[18]P. M. Herst, “Protecting the radiation-damaged skin from friction: a mini review,” Journal of Medical Radiation Sciences, vol. 61, no. 2, pp. 119–125, Jun. 2014.
[19]S. D’haese, M. Van Roy, T. Bate, P. Bijdekerke, and V. Vinh-Hung, “Management of skin reactions during radiotherapy in Flanders (Belgium): A study of nursing practice before and after the introduction of a skin care protocol,” European Journal of Oncology Nursing, vol. 14, no. 5, pp. 367–372, Dec. 2010.
[20]A. Rosenthal, R. Israilevich, and R. Moy, “Management of acute radiation dermatitis: A review of the literature and proposal for treatment algorithm,” Journal of the American Academy of Dermatology, Feb. 2019.
[21]V. Yogi, O. Singh, V. Mandloi, and M. Ahirwar, “Role of topical aloe vera gel in the recovery of high-grade, radiation-induced dermatitis,” Clinical Cancer Investigation Journal, vol. 7, no. 5, p. 167, 2018.
[22]S. Heggie et al., “A Phase III Study on the Efficacy of Topical Aloe Vera Gel on Irradiated Breast Tissue:,” Cancer Nursing, vol. 25, no. 6, pp. 442–451, Dec. 2002.
[23]S.-Z. Shaw, H.-H. Nien, C.-J. Wu, L. T. Lui, J.-F. Su, and C.-H. Lang, “3M Cavilon No-Sting Barrier Film or topical corticosteroid (mometasone furoate) for protection against radiation dermatitis: A clinical trial,” Journal of the Formosan Medical Association, vol. 114, no. 5, pp. 407–414, May 2015.
[24]M.-Y. Huang, J.-J. Huang, C.-Y. Chai, S.-H. Chen, M.-P. Kuo, and C.-C. Lin, “The Reduction Effect of Extracts of Soybean Seeds on Acute Radiation Dermatitis,” Fooyin Journal of Health Sciences, vol. 2, no. 1, pp. 21–25, Feb. 2010.
[25]P. Tavlarakis, J. J. Urban, and N. Snow, “Determination of Total Polyvinylpyrrolidone (PVP) in Ophthalmic Solutions by Size Exclusion Chromatography with Ultraviolet-visible Detection,” Journal of Chromatographic Science, vol. 49, no. 6, pp. 457–462, Jul. 2011.
[26]R. Rashid, N. S. J. Lim, S. M. L. Chee, S. N. Png, T. Wohland, and M. Raghunath, “Novel Use for Polyvinylpyrrolidone as a Macromolecular Crowder for Enhanced Extracellular Matrix Deposition and Cell Proliferation,” Tissue Engineering Part C: Methods, vol. 20, no. 12, pp. 994–1002, Dec. 2014.
[27]Y. Hong, J. H. Fitton, and B. W. Ziegelaar, “Effect of crosslinked poly(1-vinyl-2-pyrrolidinone) gels on cell growth in static cell cultures,” p. 13.
[28]T. Wang, X.-K. Zhu, X.-T. Xue, and D.-Y. Wu, “Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings,” Carbohydrate Polymers, vol. 88, no. 1, pp. 75–83, Mar. 2012.
[29]S. M. Choi, D. Singh, A. Kumar, T. H. Oh, Y. W. Cho, and S. S. Han, “Porous Three-Dimensional PVA/Gelatin Sponge for Skin Tissue Engineering,” International Journal of Polymeric Materials, vol. 62, no. 7, pp. 384–389, Mar. 2013.
[30]E. Esposito, R. Cortesi, and C. Nastruzzi, “Gelatin microspheres: influence of preparation parameters and thermal treatment on chemico-physical and biopharmaceutical properties,” Biomaterials, vol. 17, no. 20, pp. 2009–2020, Oct. 1996.
[31]S. M. Choi, D. Singh, A. Kumar, T. H. Oh, Y. W. Cho, and S. S. Han, “Porous Three-Dimensional PVA/Gelatin Sponge for Skin Tissue Engineering,” International Journal of Polymeric Materials, vol. 62, no. 7, pp. 384–389, Mar. 2013.
[32]R. Jayakumar, M. Prabaharan, P. T. Sudheesh Kumar, S. V. Nair, and H. Tamura, “Biomaterials based on chitin and chitosan in wound dressing applications,” Biotechnology Advances, vol. 29, no. 3, pp. 322–337, May 2011.
[33]H. Hamedi, S. Moradi, S. M. Hudson, and A. E. Tonelli, “Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review,” Carbohydrate Polymers, vol. 199, pp. 445–460, Nov. 2018.
[34]阮進惠、沈家弘,〈不同去乙醯度幾丁聚醣乳化性質之比較及其應用於沙拉醬之研究〉,臺灣農業化學與食品科學,第44卷,第1期,頁41–53,2006年2月。
[35]H. Ueno, T. Mori, and T. Fujinaga, “Topical formulations and wound healing applications of chitosan,” Advanced Drug Delivery Reviews, vol. 52, no. 2, pp. 105–115, Nov. 2001.
[36]M. S. Valiathan, “Sree Chitra Tirunal Institute for Medical Sciences and Technology,” Artificial Organs, vol. 8, no. 2, pp. 232–233, May 1984.
[37]Sumy State University, Ukraine, M. V. Pogorielov, and V. Z. Sikora, “Chitosan as a Hemostatic Agent: Current State,” European Journal of Medicine. Series B, vol. 2, no. 1, pp. 24–33, Mar. 2015.
[38]H. Hamedi, S. Moradi, S. M. Hudson, and A. E. Tonelli, “Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review,” Carbohydrate Polymers, vol. 199, pp. 445–460, Nov. 2018.
[39]Y. Zhao et al., “Novel carbon quantum dots from egg yolk oil and their haemostatic effects,” Scientific Reports, vol. 7, no. 1, Dec. 2017.
[40]M. H. Latif, M. A. K. Alsouz, and M. B. Taher, “Quantification of the components of the Iraqi Chicken wet egg yolk, and characterization of Lecithin.,” p. 8.
[41]M. Mahmoudi, M. A. Ebrahimzadeh, F. Pourmorad, N. Rezaie, and M. A. Mahmoudi, “Anti-inflammatory and analgesic effects of egg yolk: a comparison between organic and machine made,” p. 5.
[42]A. Kovalcuks, “PURIFICATION OF EGG YOLK OIL OBTAINED BY SOLVENT EXTRACTION,” vol. 1, p. 7, 2014.
[43]H. Aro, E. P. Järvenpää, K. Könkö, M. Sihvonen, V. Hietaniemi, and R. Huopalahti, “Isolation and purification of egg yolk phospholipids using liquid extraction and pilot-scale supercritical fluid techniques,” European Food Research and Technology, vol. 228, no. 6, pp. 857–863, Apr. 2009.
[44]陳怡兆,<蛋黃油的萃製技術簡介>,網址:https://www.coa.gov.tw/ws.php?id=18399,上網日期:2018 年 6 月 12 日。
[45]K. Suknuntha, V. Tantishaiyakul, V. Vao-Soongnern, Y. Espidel, and T. Cosgrove, “Molecular modeling simulation and experimental measurements to characterize chitosan and poly(vinyl pyrrolidone) blend interactions,” Journal of Polymer Science Part B: Polymer Physics, vol. 46, no. 12, pp. 1258–1264, Jun. 2008.
[46]S. Anjum, A. Arora, M. S. Alam, and B. Gupta, “Development of antimicrobial and scar preventive chitosan hydrogel wound dressings,” International Journal of Pharmaceutics, vol. 508, no. 1–2, pp. 92–101, Jul. 2016.
[47]A. Serafim et al., “Gelatin-PVP Hydrogels with Potential Skin Grafts Applications,” Key Engineering Materials, vol. 638, pp. 38–46, Mar. 2015.
[48]M. Pereda, A. G. Ponce, N. E. Marcovich, R. A. Ruseckaite, and J. F. Martucci, “Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity,” Food Hydrocolloids, vol. 25, no. 5, pp. 1372–1381, Jul. 2011.
[49]V. C. Nguyen, V. B. Nguyen, and M.-F. Hsieh, “Curcumin-Loaded Chitosan/Gelatin Composite Sponge for Wound Healing Application,” International Journal of Polymer Science, vol. 2013, pp. 1–7, 2013.
[50]U. Klinkesorn, “The Role of Chitosan in Emulsion Formation and Stabilization,” Food Reviews International, vol. 29, no. 4, pp. 371–393, Oct. 2013.
[51]I. Migneault, C. Dartiguenave, M. J. Bertrand, and K. C. Waldron, “Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking,” BioTechniques, vol. 37, no. 5, pp. 790–802, Nov. 2004.
[52]J.-Y. Lai, Y.-T. Li, and T.-P. Wang, “In Vitro Response of Retinal Pigment Epithelial Cells Exposed to Chitosan Materials Prepared with Different Cross-Linkers,” International Journal of Molecular Sciences, vol. 11, no. 12, pp. 5256–5272, Dec. 2010.
[53]S. Patel, S. Srivastava, M. R. Singh, and D. Singh, “Preparation and optimization of chitosan-gelatin films for sustained delivery of lupeol for wound healing,” International Journal of Biological Macromolecules, vol. 107, pp. 1888–1897, Feb. 2018.
[54]Y. Yang, A. C. Ritchie, and N. M. Everitt, “Comparison of glutaraldehyde and procyanidin cross-linked scaffolds for soft tissue engineering,” Materials Science and Engineering: C, vol. 80, pp. 263–273, Nov. 2017.
[55]A. Bakopoulou et al., “Dental pulp stem cells in chitosan/gelatin scaffolds for enhanced orofacial bone regeneration,” Dental Materials, vol. 35, no. 2, pp. 310–327, Feb. 2019.
[56]K. G. Subramanian and V. Vijayakumar, “Hydrogels: Classification, Synthesis, Characterization, and Applications,” p. 16.
[57]J. Bereiter-Hahn et al., “CELLULAR RESPONSES TO EGG-OIL (CHARISMON©),” Acta Medica (Hradec Kralove, Czech Republic), vol. 57, no. 2, pp. 41–48, 2014.
[58]張倩玉、許斌、張惠博等,〈SD大鼠急性放射性皮炎模型的建立〉,現代生物醫學進展,第18卷,第8期,頁1419–1424,2019年4月。
[59]龔震宇、童亞林、萬友華等,〈高能X射線放射性皮膚損傷動物模型的建立〉,中華燒傷雜誌,第26卷,第5期,頁379–381,2010年10月。
[60]OzRadOnc. http://ozradonc.wikidot.com/electron-beam-dose-distribution , accessed 2019/04/21.
[61]E. M. Abdelrazek, H. M. Ragab, and M. Abdelaziz, “Physical Characterization of Poly (vinyl pyrrolidone) and Gelatin Blend Films Doped with Magnesium Chloride,” Plastic and Polymer Technology, vol. 2, no. 1, p. 8, 2013.
[62]M. H. Latif, M. A. K. Alsouz, and M. B. Taher, “Quantification of the components of the Iraqi Chicken wet egg yolk, and characterization of Lecithin.,” p. 8.
[63]Hashim Z., Zaki S.S.A.M., and Muhamad I.I., “Quality assessment of fried palm oils using fourier transform infrared spectroscopy and multivariate approach,” Chemical Engineering Transactions, vol. 56, pp. 829–834, Apr. 2017.
[64]V. T. Kimura, C. S. Miyasato, B. P. Genesi, P. S. Lopes, C. M. P. Yoshida, and C. F. da Silva, “The effect of andiroba oil and chitosan concentration on the physical properties of chitosan emulsion film,” Polímeros, vol. 26, no. 2, pp. 168–175, Jun. 2016.
[65]J. Wang et al., “Cinnamon oil-loaded composite emulsion hydrogels with antibacterial activity prepared using concentrated emulsion templates,” Industrial Crops and Products, vol. 112, pp. 281–289, Feb. 2018.
[66]G. Lan et al., “Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent,” Colloids and Surfaces B: Biointerfaces, vol. 136, pp. 1026–1034, Dec. 2015.
[67]T. Dai, M. Tanaka, Y.-Y. Huang, and M. R. Hamblin, “Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects,” Expert Review of Anti-infective Therapy, vol. 9, no. 7, pp. 857–879, Jul. 2011.
[68]P. T. S. Kumar, G. Praveen, M. Raj, K. P. Chennazhi, and R. Jayakumar, “Flexible, micro-porous chitosan–gelatin hydrogel/nanofibrin composite bandages for treating burn wounds,” RSC Advances, vol. 4, no. 110, pp. 65081–65087, 2014.
[69]T. J. Koh and L. A. DiPietro, “Inflammation and wound healing: the role of the macrophage,” Expert Reviews in Molecular Medicine, vol. 13, Jul. 2011.
[70]P. Krzyszczyk, R. Schloss, A. Palmer, and F. Berthiaume, “The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes,” Frontiers in Physiology, vol. 9, May 2018.
[71]P. Thangavel, B. Ramachandran, S. Chakraborty, R. Kannan, S. Lonchin, and V. Muthuvijayan, “Accelerated Healing of Diabetic Wounds Treated with L-Glutamic acid Loaded Hydrogels Through Enhanced Collagen Deposition and Angiogenesis: An In Vivo Study,” Scientific Reports, vol. 7, no. 1, Dec. 2017.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊