跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/09 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁芳誠
研究生(外文):LIANG, FANG-CHENG
論文名稱:新穎性多功能智慧型紡織品在光電元件的應用
論文名稱(外文):Novel Multifunctional Smart Textiles Application in Optoelectronic Devices
指導教授:郭霽慶
指導教授(外文):KUO, CHI-CHINGREDOUANE BORSALI
口試委員:郭霽慶芮祥鵬蘇昭瑾陳文章
口試委員(外文):KUO, CHI-CHINGRWEI, SYANG-PENGSU, CHAO-CHINCHEN, WEN-CHANGSERGE COSNIERREDOUANE BORSALI
口試日期:2019-09-19
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:159
中文關鍵詞:自由基聚合靜電紡絲纖維智慧型紡織品金屬離子與磁性螢光感測轉印技術奈米銀線穿戴式感應裝置電阻型壓力感測器人造皮膚健康監測
外文關鍵詞:Free Radical PolymerizationElectrospinningSmart TextilespH and Magnetic ChemosensorTransfer printingNanowiresWearable DisplayResistive Pressure SensorArtificial SkinsHealth-Monitoring
ORCID或ResearchGate:https://www.researchgate.net/profile/Fang_Cheng_Liang
相關次數:
  • 被引用被引用:0
  • 點閱點閱:413
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:1
近年來奈米科技發展日新月異,擬開發出低成本、高效率、柔性/可拉伸材料應用在智慧型紡織品備受重視,材料具有柔性、拉伸性、輕薄性是製作光電元件中不可或缺的一塊。其中靜電紡絲技術被譽為最符合經濟效益且具有製備智慧型紡織品的潛力。此方法簡單、製程溫度以及成本低,可以製備出比表面積高的高分子奈米纖維。藉由各種高分子材料混合以及靜電紡絲操控條件的搭配,可以調控出各式各樣具功能性之高分子奈米纖維型態。故本論文利用靜電紡絲技術開發出新穎性多功能智慧型紡織品運用於光電元件,主要應用能分成四個部分: (a)多變色兼pH感應型化學傳感器 (b)溫度與磁性環境感應型傳感器(c)新穎性轉印技術應用於可拉伸電子器件(d)電阻型壓力感測器應用於穿戴式裝置。本博士論文可分為以下四個部分:

第一部分(第一章)-利用自由基聚合法(Free radical polymerization)合成出一系列新穎性螢光共聚高分子,結合靜電紡絲技術,成功製備具有感測Hg2+離子及pH環境應答多功能之多變色螢光奈米纖維,探討不同濃度之Hg2+離子與pH的環境智慧應答所產生之光物理變化。本研究材料包括Poly(MMA-co-RhBAM) (P1具pH感測)、Poly(MMA-co-BNPTU) (P2具Hg2+離子感測)、Poly(MMA-co-BNPTU-co-RhBAM)含不同比例之BNPTU:RhBAM (P3~P5同時具pH與Hg2+離子感測),再利用靜電紡絲的技術,將上述材料製備成高孔隙度的奈米纖維,並探討不同材料感測Hg2+離子的差異性。共聚高分子材料中導入兩種不同螢光基團,分別為可感測Hg2+離子的綠色螢光單體BNPTU(供體),以及對pH值敏感的橘紅色螢光RhBAM(受體)。其中BNPTU螯合Hg2+離子,會從綠光轉移成藍光,而RhBAM(受體)處於酸性環境下,會放出橘紅色螢光。藉由螢光能量共振轉移(Fluorescence Resonance Energy Transfer)(FRET)的機制,調控BNPTU(供體)與RhBAM(受體)的鏈段比例,可達到多變色螢光放光現象,例如: 在不同Hg2+與酸性濃度下,能呈現如藍光、綠光、黃光、橘光、紫光、白光等多變色全彩的螢光奈米纖維。P5於水溶液中的感測靈敏度的極限濃度可達10-6~10-7莫耳濃度,實際應用在環檢檢測Hg2+離子領域上,去除率能達到92%以上,歸功於材料特性與高比表面積的多孔型態奈米纖維。

第二部分(第二章)-合成具有磁性及多功能感測之螢光共聚合高分子P(NIPAAm-co-NMA-co-AA)混摻Fe3O4 Nanoparticles 和 BNPTU,透過靜電紡絲技術製備成奈米纖維,應用於多功能感測系統中(可同時感測磁性與金屬汞離子)BNPTU具有感測汞(Hg2+)離子的能力;FeNPs具有磁性功能。實驗中透過自由基聚合法(Free Radical Polymerization)合成出不同比例的共聚高分子。藉由調控電紡參數製備成奈米纖維,以SEM觀察其奈米纖維型態;TEM和EDS鑑定Fe3O4尺寸大小與混摻含量,最後以PL、SQUID、強力磁鐵探討探其光物理變化和磁性功能。研究結果顯示,奈米纖維透過熱交聯反應後能夠維持纖維型態,其P(NIPAAm-co-NMA-co-AA)混摻FeNPs和BNPTU具有感測汞(Hg2+)離子的能力,偵測範圍於10-4~10-2M(或是更高濃度)。此多功能螢光奈米纖維,利用非接觸力(磁力)方式吸引已吸附金屬的奈米纖維,達到同時兼具磁性感測與金屬感測的功能。

第三部分(第三章)-藉由簡單的旋轉塗佈與噴塗披覆法,將奈米銀線塗佈在彈性高分子(PDMS)上,製作出具有良好導電度之透明貼覆膜,並且可藉由水轉印法貼覆在無規則的表面上(纖維織物、皮膚、玻璃基材…),其電阻低(9 Ω ~ 200Ω)且透明度高(80 - 95%),同時兼具以上兩種特性,使其可應用在各種透明的電子元件上。從SEM及EDS證實銀線可以均勻的分佈在所選用的彈性材料上。藉由Bending Test 與Expandsion Test 試驗中,得知導電貼覆膜可應用在各種彎曲角度(45o - 315o)的基材上,其電阻依然不受影響(可維持在11 Ω)。本研究首次將導電薄膜貼覆在無規則球體上,藉由來回充放氣體(0ml - 30ml),測量導電貼覆膜之電阻變化(145 Ω - 162 Ω),可以進一步估算球體體積的變化,屬於一種全新的量測手段,且其同時具有良好的循環再現性(在30次循環測試中,其電阻維持一樣)。貼覆膜體積輕薄不易影響到受測物體(增加準確性),未來可以用於嬰兒呼吸的量
測、老人健康照顧(呼吸長短快慢)以及動物情緒(導盲犬)的紀錄等等。並且將導電貼覆膜進一步製作成有機發光元件(LEC),貼覆在纖維織物與皮膚表面上,形成新世代穿戴式LEC織物與電子皮膚。

第四部分(第四章)-在此篇研究中,我們以靜電紡絲奈米纖維結合銀奈米顆粒,製作出三明治結構的電阻型壓力感測器,整套系統成本低廉、製程簡單;藉由調控電紡奈米纖維的參數,可達到最小低於0.2 kPa的感測靈敏度,導通電阻值達到10 Ω以下。並透過控制電紡奈米纖維的密度,得到數個不同範圍的壓力感測區間,在拉伸(應變ε=0.5)和彎折(曲率1/3mm-1) 的循環測試後,仍維持穩定的感測性能,本系統有良好的拉伸性、彎折性、可回復性、快速的反應時間、超高靈敏度與可微控感測區間的獨特特性,全織物型的精巧設計可以和貼身織物結合或直接與人體連結。我們已成功應用於智能開關和脈搏感測,智能開關與LED和衣物結合後,仍然可以維持其性能。脈搏感測可以即時監控正常成年人的心跳次數。未來可望廣泛應用和商業化在各種與人體互動的觸覺電子裝置上。


To date, the development of smart textiles, artificial skins, environmental sensory devices, and flexible/stretchable optoelectronics involve the innovation of material synthesis, mechanical design, and fabrication strategies have attracted considerable attention in wearable displays. The mechanically flexible and stretchable functions with cost-effective, facile, lightweight, and large-area expandability are essential modules to fabricate the optoelectronic devices in various wearable display applications. Among them, electrospinning is an easy, versatile, and inexpensive technique enables flexible morphology tuning, assembling various functional nanofibers, and high-throughput continuous production has motivated extensive studies on wearable electronics applications. Therefore, it is necessary to develop innovative projects including the environment-sensing elements with pH-sensing dependency, temperature-sensitive, full-color switchable chemosensors, stretchable electronics, and tactile sensors for various wearable electronics applications. The present PhD thesis can be categorized by four parts as below:

1. RGB-Switchable Porous Electrospun Nanofiber Chemoprobe-filter Prepared from Multifunctional Copolymers for Versatile Sensing of pH and Heavy Metals (Chapter 1): Novel red–green–blue (RGB) switchable probes based on fluorescent porous electrospun (ES) nanofibers exhibiting high sensitivity to pH and mercury ions (Hg2+) were prepared with poly(MMA-co-BNPTU-co-RhBAM)) by using a single-capillary spinneret. The MMA, BNPTU, and RhBAM moieties were designed to (i) permit formation of porous fibers, (ii) fluoresce for Hg2+ detection, and (iii) fluoresce for pH, respectively. The fluorescence emission of BNPTU (fluorescence resonance energy transfer (FRET) donor) changed from green to blue as it detected Hg2+. The fluorescence emission of RhBAM (FRET acceptor) was highly selective for pH, changing from nonfluorescent (pH 7) to exhibiting strong red fluorescence (pH 2). The full-color emission of the ES nanofibers included green, red, blue, purple, and white depending on the particular pH and Hg2+-concentration combination of the solution. The porous ES nanofibers with 30-nm pores were fabricated using hydrophobic MMA, low-boiling-point solvent, and at a high relative humidity (80%). These porous ES nanofibers had a higher surface-to-volume ratio than did the corresponding thin films, which enhanced their performance.

2. Novel Magnet and Thermoresponsive Chemosensory Electrospinning Fluorescent Nanofibers and Their Sensing Capability for Metal Ions (Chapter 2): Novel multifunctional switchable chemosensors based on fluorescent electrospun (ES) nanofibers with sensitivity toward magnetism, temperature, and mercury ions (Hg2+) were prepared using blends of poly(NIPAAm-co-NMA-co-AA), the fluorescent probe (BNPTU), and magnetite nanoparticles (NPs), and a single-capillary spinneret. The moieties of N-isopropylacrylamide, N-methylolacrylamide, acrylic acid, BNPTU, and Iron oxide (Fe3O4) NPs were designed to provide thermoresponsiveness, chemical cross-linking, Fe3O4 NPs dispersion, Hg2+ sensing, and magnetism, respectively. The prepared nanofibers exhibited ultrasensitivity to Hg2+ (as low as 10−3 M) because of an 80-nm blueshift of the emission maximum (from green to blue) and 1.6-fold enhancement of the emission intensity, as well as substantial volume (or hydrophilic to hydrophobic) changes between 30 and 60 °C, attributed to the low critical solution temperature of the thermoresponsive N-isopropylacrylamide moiety. Such temperature-dependent variations in the presence of Hg2+ engendered distinct on–off switching of photoluminescence. The magnetic ES nanofibers can be collected using a magnet rather than being extracted through alternative methods.

3. Mechanically Robust Silver Nanowire–Polydimethylsiloxane Electrode Based on Facile Transfer Printing Techniques for Wearable Displays (Chapter 3): Silver nanowire (AgNW) networks have attracted considerable attention as transparent electrodes for emerging flexible optoelectronics. However, transference of such networks onto diverse arbitrary substrates with high conductivity remains a challenge because of the possibility of detaching and sliding occurring at the interface. Therefore, we developed a water-assisted transfer printing method for fabrication and transfer of an AgNW–polydimethylsiloxane (PDMS) electrode. The innovative approach exhibits a robust ability for thin film transfer onto arbitrary substrates and has highly controlled and nondestructive characteristics. The obtained electrodes exhibited high conductivity (9 Ω/sq, 82% at 550 nm, σDC/σOp ≈ 200), tensile strain (0% to 50%), and flexibility (bending radius of less than 2 mm) without significant loss of conductivity compared with devices fabricated through conventional methods. Furthermore, we demonstrated novel textile-based flexible light-emitting electrochemical cell (PLECs) based on the stretchable AgNW-PDMS electrode and buckling concept, thereby realizing highly stretchable PLECs with excellent performance and mechanical robustness. The strained device luminance intensity was optimized to 58 cd m-2 at 7 V under 10% linear strain without damaging the electroluminescent properties. Notably, this effective and practical transfer method provides an approach for developing electronic nanowire devices with unique configurations and high performance.

4. Mechanically Robust and Ultra-Sensitive Skin-Inspired Nanofiber-based Resistive Pressure Sensor Based on Fibrous Interlocked Microstructures (Chapter 4): To date, most of the skin-like pressure sensors largely depend on traditional lithography technique to fabricate the microstructures, limiting their wide practical applications due to the high-cost process and the redundant fabrication procedure. Herein, we present a cost-effective, lithographic-free, and large-area expandability to fabricate skin-inspired resistant-type pressure sensors with ultra-performance and lightweight based on fibrous interlocked-microstructures (FIM). The unique sandwich-structured conducting nanofiber (ESSCN) configuration is composed of poly(styrene-block-ethylene-ran-butylene-block-styrene) (SEBS) natural rubber and silver nanoparticles (AgNPs), whereas the dielectric SEBS nanofiber is employed as the middle layer, sandwiched by two SEBS/AgNPs electrodes at top and bottom for packaging. The FIM endows the obtained pressure sensors show superior performance, including ultra-high sensitivity of 71.07 kPa-1 in a low-pressure regime (<0.06 kPa), rapid response time (<2 ms), highly reproducible stability (>100 cycles), mechanical stimuli sensing (pressure, strain, and curvature). As a proof-of-concept demonstration, the sensors have been used for integration with RGB-LED wristband and garments, monitoring human physiological signals, and detect spatial pressure distribution, thereby endowing our ESSCN has broader potential applications in versatile electronic skin and human machine interfaces.

In summary, based on electrospinning, spraying coating, transfer printing technology, we successful prepared the ultra-sensitivity and full-color switchable functions smart textiles (part one), multifunctional magnetic and fluorescence chemosensor (part two), facile, inexpensive, and chemical free transfer printing technology (part three), skin-inspired resistive pressure sensors (part four). The present study demonstrated that full-color switchable and pH-sensing dependency chemosensors, temperature-sensitive and magnetic chemosensors, chemical free transfer printing technology, skin-inspired resistive pressure sensors have potential for diverse applications, such as water purification, sensing filters, environment-sensing devices, multifunctional smart textiles, wearable electronics, tactile sensors, and artificial skins.

中文摘要 i
Abstract iv
France-Abstract ix
致謝 xv
Contents xvii
Figure Captions xx
Table xxx

Chapter 1、 RGB-Switchable Porous Electrospun Nanofiber Chemoprobe-filter Prepared from Multifunctional Copolymers for Versatile Sensing of pH and Heavy Metals 1
1-1 Introduction 1
1-2 Motivation 3
1-3 Background and Review of literatures 7
1-3-1 Development of chemosensors for the detection of analytes 7
1-3-2 Electrospinning techniques for fabricating ENMs 13
1-3-3 Application of ENMs in optical chemosensors for heavy metal detection 15
1-4 Experimental Section 16
1-4-1 Material 16
1-4-2 Synthesis of 4-Bromo-N-allyl-1, 8-naphthalimide 17
1-4-3 Synthesis of 4-(Aminoethylene) amino-N-allyl-1, 8-naphthalimide 17
1-4-4 Synthesis of 1, 8-Naphthalimide-Based Monomer (BNPTU) 18
1-4-5 Synthesis of RhB Hydrazide 19
1-4-6 Synthesis of RhBAM-Based Monomer 19
1-4-7 Synthesis of Poly(MMA-co-BNPTU-co-RhBAM) 25
1-4-8 Synthesis of P1 26
1-4-9 Synthesis of P2 27
1-4-10 Synthesis of P5 29
1-5 Preparation of Copolymer Solutions with Different pH Values 30
1-6 Preparation of ES Nanofibers 30
1-7 Characterization 31
1-8 Results and Discussion 33
1-8-1 Characterization of BNPTU, RhBAM, Poly(MMA-co-BNPTU-co-RhBAM) 33
1-8-2 Morphology of ES Nanofibers 37
1-8-3 pH Sensing of ES Nanofibers 39
1-8-4 Hg2+ Sensing of ES Nanofibers 45
1-9 Conclusion 55

Chapter 2、Novel Magnet and Thermoresponsive Chemosensory Electrospinning Fluorescent Nanofibers and Their Sensing Capability for Metal Ions 57
2-1 Introduction 57
2-2 Motivation 59
2-3 Background and Review of literatures 62
2-3-1 Responsive Polymer-Based Temperature Sensors 62
2-3-2 Responsive Polymer-Based Magnetic Sensors 66
2-4 Experimental Section 69
2-4-1 Material 69
2-4-2 Synthesis of 4-Bromo-N-allyl-1,8-naphthalimide .70
2-4-3 Synthesis of 4-(Aminoethylene)amino-N-allyl-1,8-naphthalimide 70
2-4-4 Synthesis of BNPTU 70
2-4-5 Synthesis of Magnetic Iron Oxide (Fe3O4) Nanoparticles (NPs) 71
2-4-6 Synthesis of Poly(NIPAAm-co-NMA-co-AA) 72
2-4-7 Synthesis of Poly(NIPAAm-co-NMA) Random Copolymers (P1) 73
2-4-8 Synthesis of Poly(NIPAAm-co-NMA-co-AA) Random Copolymers (P2) 73
2-5 Preparation of Electrospun (ES) Nanofibers 74
2-6 Characterization 75
2-7 Results and Discussion 76
2-7-1 Characterization of BNPTU and Poly(NIPAAm-co-NMA-co-AA) 76
2-7-2 Morphology and Characterization of ES Nanofibers 78
2-7-3 Hg2+ Sensing, Thermoresponsiveness, Magnetic of Nanofibers 82
2-8 Conclusion 89

Chapter 3、Mechanically Robust Silver Nanowire–Polydimethylsiloxane Electrode Based on Facile Transfer Printing Techniques for Wearable Displays 90
3-1 Introduction 90
3-2 Motivation 91
3-3 Background and Review of literatures 94
3-3-1 Typical Transfer Printing Methods 94
3-3-2 Inorganic Semiconductors 96
3-4 Experimental Section 98
3-4-1 Material 98
3-4-2 Preparation of AgNW Dispersion 98
3-4-3 Fabrication of WTP Stretchable Conductive Electrodes 98
3-4-4 Stretchable Conductive Electrode Integrated with Textiles 99
3-4-5 Stretchable and Wearable Textiles in the PLEC Device 99
3-5 Device Characterization 100
3-6 Results and discussion 101
3-6-1 Designing New Transfer Methods by using WTP Technique 101
3-6-2 Electrical and Mechanical Properties of Conductive Electrode 103
3-6-3 Textile-Based WTP PLEC Devices 115
3-7 Conclusion 120

Chapter 4、Mechanically Robust and Ultra-Sensitive Skin-Inspired Nanofiber-based Resistive Pressure Sensor Based on Fibrous Interlocked Microstructures 121
4-1 Introduction 121
4-2 Motivation 122
4-3 Background and Review of literatures 124
4-3-1 Strain and Pressure Sensors 124
4-3-2 Piezoresistive 126
4-4 Experimental Section 128
4-4-1 Materials 128
4-4-2 Preparation of SEBS fiber and silver nanoparticles 128
4-4-3 Design of the Skin-inspired ESSCN Pressure Sensor 129
4-5 Device Characterization 129
4-6 Results and discussion 130
4-7 Conclusion 144

Chapter 5、References and Notes 146
Chapter 6、Publication 158

1.Hamilton, J. W.; Kaltreider, R. C.; Bajenova, O. V.; Ihnat, M. A.; McCaffrey, J.; Turpie, B. W.; Rowell, E. E.; Oh, J.; Nemeth, M. J.; Pesce, C. A.; Lariviere, J. P. Environ. Health 1998, 106, 1005-1015.
2.Vallee, B. L.; Ulmer, D. D. Annu. Rev. Biochem. 1972, 41, 91-128.
3.Partanen, T.; Heikkila, P.; Hernberg, S.; Kauppinen, T.; Moneta, G.; Ojajarvi, A. Scand. J. Work. Environ. Health 1991, 17, 231-239.
4.W. S. Wan Ngah, M. A. Bioresource. Technol. 2008, 99, 3935-3948.
5.U.S. Environmental Protection Agency. Risk Assessment, Management and Communication of Drinking Water Contamination; US EPA 625/4-89/024, EPA: Washington, DC, 1989.
6.M. Ghaedi, F. Ahmadi, A. Shokrollahi, J. Hazard. Mater. 2007, 142, 272-278.
7.H. Karami, M. F. Mousavi, Y. Yamini, M. Shamsipur, Anal. Chim. Acta 2004, 509, 89-97.
8.E. Marguí, P. Kregsamer, M. Hidalgo, J. Tapias, I. Queralt, C. Streli, Talanta 2010, 82, 821-827.
9.Z. Chen, M. Megharaj, R. Naidu, Talanta 2007, 72, 394-400.
10.Rurack, K.; Resch-Genger, U. Chem. Soc. Rev. 2002, 31, 116-127.
11.Yang, Y. K.; Yook, K. J.; Tae, J. J. Am. Chem. Soc. 2005, 127, 16760-16761.
12.Amendola, V.; Fabbrizzi, L.; Foti, F.; Licchelli, M.; Mangano, C.; Pallavicini, P.; Poggi, A.; Sacchi, D.; Taglietti, A. Coord. Chem. Rev. 2006, 250, 273-299.
13.Boening, D. W. Chemosphere 2000, 40, 1335-1351.
14.Milaeva, E. R. Journal of Inorganic Biochemistry 2006, 100, 905-915.
15.Liu, B.; Tian, H. Chem. Commun. 2005, 25, 3156-3158.
16.Leng, B.; Zou, L.; Jiang, J.; Tian, H. Sens. Actuators, B 2009, 140, 162-169.
17.Zou, Q.; Tian, H. Sens. Actuators, B 2010, 149, 20-27.
18.Lua, Z. J.; Wang, P. N.; Zhang, Y.; Chen, J. Y.; Zhen, S.; Leng, B.; Tian, H. Anal. Chim. Acta 2007, 597, 306-312.
19.Wang, W.; Wen, Y.; Zhang, Y.; Fei, X.; Li, Y.; Yang, Q.; Xu, X. Dalton Trans. 2013, 42, 1827-1833.
20.Liu, C.; Xu, J.; Yang, F.; Zhou, W.; Li, Z.; Wei, M.; Yu, M. Sens. Actuators, B 2015, 212, 364-370.
21.Patrick, L. G. F.; Whiting, A. Dyes Pigm. 2002, 55, 123-132.
22.Fan, J.; Lin, C.; Li, H.; Zhan, P.; Wang, J.; Cui, S.; Hu, M.; Cheng, G.; Peng, X. Dyes Pigm. 2013, 99, 620-676.
23.Hu, Z. Q.; Li, M.; Liu, M. D.; Zhuang, W. M.; Li, G. K. A. Dyes Pigm. 2013, 96, 71-75.
24.Shi, X. L.; Mao, G. J.; Zhang, X. B.; Liu, H. W.; Gong, Y. J.; Wu, Y. X.; Zhou, L. Y.; Zhang, J.; Tan, W. Talanta 2014, 130, 356-362.
25.Babel, A.; Li, D.; Xia, Y.; Jenekhe, S. A. Macromolecules 2005, 38, 4705-4711.
26.Kuo, C. C.; Lin, C. H.; Chen, W. C. Macromolecules 2007, 40, 6959-6966.
27.Kuo, C. C.; Tung, Y. C.; Lin, C. H.; Chen, W. C. Macromol. Rapid Commun. 2008, 29, 1711-1715.
28.Chen, Y. Y.; Kuo, C. C.; Chen, B. Y.; Chiu, P. C.; Tsai, P. C. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 262-269.
29.Kuo, C. C.; Tung, Y. C.; Chen, W. C. Macromol. Rapid Commun. 2010, 31, 65-70.
30.Chiu, Y. C.; Kuo, C. C.; Hsu, J. C.; Chen, W. C. ACS Appl. Mater. Interfaces 2010, 2, 3340-3347.
31.Chiu, Y. C.; Chen, Y.; Kuo, C. C.; Tung, S. H.; Kakuchi, T.; Chen, W. C. ACS Appl. Mater. Interfaces 2012, 4, 3387-3395.
32.Chen, L. N.; Chiu, Y. C.; Hung, J. J.; Kuo, C. C.; Chen, W. C. Macromol. Chem. Phys. 2014, 215, 286-294.
33.Wang, W.; Yang, Q.; Sun, L.; Wang, H.; Zhang, C.; Fei, X.; Sun, M.; Li, Y. J. Hazard. Mater. 2011, 194, 185-192.
34.Chen, L. N.; Kuo, C. C.; Chiu, Y. C.; Chen, W. C. RSC Adv. 2014, 4, 45345-45353.
35.Chen, B. Y.; Kuo, C. C.; Huang, Y. S.; Lu, S. T.; Liang, F. C.; Jiang, D. H. ACS Appl. Mater. Interfaces 2015, 7, 2797-2808.
36.Cho, C. J.; Lu, S. T.; Kuo, C. C.; Liang, F. C.; Chen, B. Y.; Chu, C. C. React. Funct. Polym. 2016, 108, 137-147.
37.Hung, C. C.; Kuo. C. C.; Weng, N. K.; Wu, W. C.; Chen, B. Y.; Cho, C. J.; Hsu, I. J.; Chiu, Y. C.; Chen, C. C. Polym. J. (Tokyo, Jpn.) 2016, 48, 439-449.
38.Chen, J.; Zeng, F.; Wu, S.; Su, J.; Tong, Z. Small 2009, 5, 970-978.
39.Hu, Z. Q.; Lin, C. S.; Wang, X. M.; Ding, L.; Cui, C. L.; Liu, S. F.; Lu, H. Y. Chem. Commun. 2010, 46, 3765-3767.
40.Wan, X.; Liu, S. J. Mater. Chem. 2011, 21, 10321-10329.
41.Wang, J.; Li, H.; Long, L.; Xiao, G.; Xie, D. J. Lumin. 2012, 132, 2456-2461.
42.D. Maity, T. Govindaraju, Inorg. Chem. 2011, 50, 11282-11284.
43.Q. Zhao, F.Y. Li, C.H. Huang, Chem. Soc. Rev. 2010, 39, 3007-3030.
44.Y.J. Na, W.Y. Choi, G.R. You, C. Kim, Sens. Actuators B 2016, 223, 234-240.
45.T. Gunnlaugsson, H.D.P. Ali, M. Glynn, P.E. Kruger, G.M. Hussey, F.M. Pfeffer, C.M.D. dos Santos, J. Tierney, J. Fluoresc. 2005, 15, 287-299.
46.M.Y. Berezin, S. Achilefu, Chem. Rev. 2010, 110, 2641-2684.
47.Z.-X. Han, X.-B. Zhang, Z. Li, Y.-J. Gong, X.-Y. Wu, Z. Jin, C.-M. He, L.-X. Jian, J.Zhang, G.-L. Shen, R.-Q. Yu, Anal. Chem. 2010, 82, 3108-3113.
48.C.Y. Li, Y. Zhou, Y.F. Li, C.X. Zou, X.F. Kong, Sens. Actuators B 2013, 186, 360-366.
49.Y. Zhang, Y. Fang, N.Z. Xu, M.Q. Zhang, G.Z. Wu, C. Yao, Chin. Chem. Lett.
2016 26, 1673-1678.
50.V. Guzsvány, H. Nakajima, N. Soh, K. Nakano, I. Švancara, K. Vytřas, L. Bjelica, T. Imato, Electroanal. 2011, 23, 1593-1596.
51.G. Aragay, J. Pons, A. Merkoçi, Chem. Rev. 2011, 111, 3433-3458.
52.Kim, J. S., Quang, D. T. Chem. Rev., 2007, 107, 3780–3799
53.C. S. Lim, J. N. Miller, J.W. Bridges, Anal. Chim. Acta 1980, 114, 183-189.
54.Ono, A.; Togashi, H. Angew. Chem., Int. Ed. 2004, 43, 4300-4302.
55.Kim, H. N., Lee, M. H., Kim, H, J., Kim, J. S.,Yoon , J. Chem. Soc. Rev., 2008, 37, 1465-1472.
56.Y.-K. Yang, K.-J. Yook and J. Tae, J. Am. Chem. Soc., 2005, 127, 16760-16761.
57.Chen, J.; Zeng, F.; Wu, S.; Su, J.; Tong, Z. Small 2009, 5, 970-978.
58.Xu, M.; Wu, S.; Zeng, F.; Yu, C. Langmuir 2010, 26, 4529-4534.
59.Li, C.; Liu, S. Chem.Commun. 2012, 48, 3262-3278.
60.Ma, B.; Wu, S.; Zeng, F.; Luo, Y.; Zhao, J.; Tong, Z. Nanotechnology 2010, 21, 195501-195512.
61.Wan, X.; Liu, S. J. Mater. Chem. 2011, 21, 10321-10329.
62.Lee, M. H., Kim, H. J.,Yoon, S.,Park, N.,Kim, J. S. Org. Lett., 2008, 10, 213-216.
63.A. Yarin, S. Koombhongse and D. Reneker, J. Appl. Phys., 2001, 90, 4836-4846.
64.B. J. Haupt, T. J. Senden and E. M. Sevick, Langmuir, 2002, 18, 2174-2182.
65.S. Mei, X. Feng and Z. Jin, Macromolecules, 2011, 44, 1615-1620.
66.K. M. Forward and G. C. Rutledge, Chem. Eng. J., 2012, 183, 492-503.
67.W. Wang, Q. Yang, L. Sun, H. Wang, C. Zhang, X. Fei, M. Sun, Y. Li, J. Hazard. Mater. Part A. 2011, 194, 185-192.
68.Li, C.; Zhang, Y.; Hu, J.; Cheng, J.; Liu, S. Angew. Chem., Int. Ed. 2010, 49, 5120-5124.
69.Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity: Academic Press: New York, 1982.
70.Huang, Y. S.; Kuo, C. C.; Shu, Y. C.; Jang, S. C.; Tsen, W. C.; Chuang, F. S.; Chen, C. C. Macromol. Chem. Phys. 2014, 215, 879-887.
71.Huang, Y. S.; Kuo, C. C.; Huang, C. C.; Jang, S. C.; Tsen, W. C.; Chuang, F. S.; Chen, B. Y.; Chen, J. J.; Chow, J. D.; Shu, Y. C. RSC Adv. 2015, 5, 88857-88865.
72.Manimala, J. C.; Anslyn, E. V. Eur. J. Org. Chem. 2002, 3909-3922.
73.Kim, K. S.; Qian, L. Tetrahedron Lett. 1993, 34, 7677-7680.
74.Batey, R. A.; Powell, D. A. Org. Lett. 2000, 2, 3237-3240.
75.Megelski, S.; Stephents, J. S.; Chase, D. B.; Rabolt, J. F. Macromolecules 2002, 35, 8456-8466.
76.Chen, H. C.; Wang, C. T.; Liu, C. L.; Liu, Y. C.; Chen, W. C. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 463-470.
77.Wang, C. T.; Kuo, C. C.; Chen, H. C.; Chen, W. C. Nanotechnology 2009, 20, 375604-375614.
78.Smith, T.; Guild, J. The C.I.E. Trans. Opt. Soc. 1931, 33, 73-134.
79.Poynton, C. A Guided Tour of Color Space: John Wiley & Sons: New York, 1997, 1-14.
80.Jiao, G. S.; Loudet, A.; Lee, H. B.; Kalinin, S.; Johansson, L. B. A.; Burgess, K. . Tetrahedron 2003, 59, 3109-3116.
81.Chang, D.; Zhao, W.; Yang, H.; Huang, Z.; Liu, X.; Han, A. Tetrahedron Lett. 2016, 57, 2655-2659.
82.Degirmenci, A.; Algi, F. Dyes Pigm. 2017, 140, 92-99.
83.Wang, X.; Drew, C.; Lee, S. H.; Senecal, K. J.; Kumar, J.; Samuelson, L. Nano Lett. 2002, 2, 1273-1275.
84.Reddy, C. S.; Zak, A.; Zussman, E. J. Mater. Chem. 2011, 21, 16086-16093.
85.Meier W: ChSRv 2000, 29, 295-303.
86.Sun P, Zhang Y, Shi L, Gan Z: Macromol Biosci 2010, 10, 621-631.
87.Torchilin V: Adv Drug Deliv Rev 2011, 63, 131-135.
88.Peng, F. B.; Lu, L. Y.; Sun, H. L.; Wang, Y. Q.; Liu, J. Q.; Jiang, Z. Y. Chem. Mater. 2005, 17, 6790-6796.
89.Kariduraganavar, M. Y.; Varghese, J. G.; Choudhari, S. K.; Olley, R. H. Ind. Eng. Chem. Res. 2009, 48, 4002-4010.
90.Ferguson CJ, Hughes RJ, Pham BTT, Hawkett BS, Gilbert RG, Serelis AK, Such CH: Macromolecules 2002, 35, 9243-9245.
91.Du JZ, Sun TM, Song WJ, Wu J, Wang J: A Angew Chem Int Ed Engl 2010, 49, 3621-3626.
92.Lefaux CJ, Zimberlin JA, Dobrynin AV, Mather PT. J Polym Sci Part B: Polym Phys 2004, 42, 3654-3666.
93.Liu TY, Hu SH, Liu K, Liu DM, Chen SY, J Control Release 2008, 126, 228-236.
94.Heskins M, Guillet JE, J MACROMOL SCI A-CHEM 1968, 2, 1441-1455.
95.Balamurugan SS, Bantchev GB, Yang Y, McCarley RL Angew Chem 2005, 117, 4950-4954.
96.Caruso F: Chem Eur J 2000, 6, 413-419.
97.Chiang WH, Huang WC, Chang CW, Shen MY, Shih ZF, Huang YF, Lin SC, Chiu HC, J Control Release 2013, 168, 280-288.
98.Hu SH, Liao BJ, Chiang CS, Chen PJ, Chen IW, Chen SY, Adv Mater 2012, 24, 3627-3632.
99.Huang H-Y, Hu S-H, Chian C-S, Chen S-Y, Lai H-Y, Chen Y-Y, J. Mater. Chem., 2012, 22, 8566-8573.
100.Liu T-Y, Hu S-H, Liu D-M, Chen S-Y, Chen IW, Nano Today 2009, 4, 52-65.
101.Liu T-Y, Hu S-H, Liu K-H, Shaiu R-S, Liu D-M, Chen S-Y, Langmuir 2008, 24, 13306-13311.
102.Liu T-Y, Liu K-H, Liu D-M, Chen S-Y, Chen I.W., Adv Funct Mater 2009, 19, 616-623.
103.Ruhland TM, Reichstein PM, Majewski AP, Walther A, Muller AH. J Colloid Interface Sci 2012, 374, 45-53.
104.Gil, E.S.; Hudson, S.M. Prog. Polym. Sci. 2004, 29, 1173-1222.
105.Chen, S.; Jiang, L.; Dan, Y. J. Appl. Polym. Sci. 2011, 121, 3322-3331.
106.Yang, X.; Jiang, Wei.; Liu, L.; Chen, B.; Wu, S.; Sun, D.; Li, F. J. Magn. Magn. Mater. 2012, 324, 2249-2257.
107.Si, S.; Kotal, A.; Mandal, T.K.; Giri, S.; Nakamura, H.; Kohara, T. Chem. Mater. 2004, 16, 3489-3496.
108.Zhao, C.; Jiang, Z.; Zhao, J.; Cao, K.; Zhang, Q.; Pan, F. Ind. Eng. Chem. Res. 2014, 53, 1606-1616.
109.Jiang, X.; Zhai, S.; Jiang, X.; Lu, G.; Huang, X. Polymer 2014, 55, 3703-3712.
110.Liu, F.; Ni, Q.Q.; Murakami, Y.. Text. Res. J. 2013, 83, 510-518.
111.Xu, L.; Liu, N.; Cao, Y.; Lu, F.; Chen, Y.; Zhang, X.; Feng, L.; Wei, L. ACS Appl. Mater. Interfaces 2014, 6, 13324-13329.
112.Jinming Hu and Shiyong Liu, Macromolecules 2010, 43, 8315-8330
113.Uchiyama, S.; Kawai, N.; de Silva, A. P.; Iwai, K. J. Am. Chem. Soc. 2004, 126, 3032-3033.
114.Hu, J. M.; Li, C. H.; Liu, S. Y. Langmuir 2010, 26, 724-729.
115.Li, C. H.; Liu, S. Y. J. J. Mater. Chem., 2010, 20, 10716-10723.
116.Qiao, R. R.; Yang, C. H.; Gao, M. Y. J. Mater. Chem. 2009, 19, 6274-6293.
117.Dudek, G.; Turczyn, R.; Strzelewicz, A.; Krasowska, M.; Rybak, A.; Grzywna, Z. J. Sep. Purif. Technol. 2013, 109, 55-63.
118.Hasanabadi, N.; Ghaffarian, S. R.; Hasani-Sadrabadi, M. M. Solid State Ionics 2013, 232, 58-67.
119.Yathindranath, V.; Rebbouh, L.; Moore, D. F.; Miller, D. W.; Lierop, J. V.; Hegmann, T. Adv. Funct. Mater. 2011, 21, 1457-1464.
120.Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P. Chem. Rev. 2012, 112, 5818.
121.C. Sanson, O. Diou, J. Th_evenot, E. Ibarboure, A. Soum, A. Brulet, S. Miraux, E. Thiaudiere, S. Tan, A. Brisson, V. Dupuis, O. Sandre and S. b. Lecommandoux, ACS Nano, 2011, 5, 1122-1140.
122.Huang, H.-Y., Hu, S.-H., Chian, C.-S., Chen, S.-Y., Lai, H.-Y.,Chen, Y.-Y., J. Mater. Chem., 2012, 22, 8566-8573
123.Zhang, W.; Zhang, W.; Zhou, N.; Cheng, Z.; Zhu, J.; Zhu, X. Polymer 2008, 49, 4569-4575.
124.Manimala, J.C.; Anslyn, E.V. J. Org. Chem. 2002, 23, 3909-3922.
125.Kim, K.S.; Qian, L. Tetrahedron Lett. 1993, 34, 7677-7680.
126.Batey, R.A.; Powell, D.A. Org. Lett. 2000, 2, 3237-3240.
127.Zhang, X.; Niu, Y.; Meng, X.; Li, Y.; Zhao. J. CrystEngComm 2013, 15, 8166-8172.
128.P. C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. R. Lee, Y. Cui, Nat. Commun., 2013, 4, 2522-2529.
129.J. Liang, L. Li, K. Tong, Z. Ren, W. Hu, X. Niu, Y. Chen, Q. Pei, ACS Nano 2014, 8, 1590-1600.
130.H. Guo, N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, S. Li, J. Kang, D. Cai, D. L. Peng, Sci. Rep. 2013, 8, 421-425.
131.S. Iijima, Nature, 1991, 354, 56-58.
132.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science, 2004, 306, 666-669.
133.J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Nano Letters, 2008, 8, 689-692.
134.Y. Xia , G. M. Whitesides , Annu. Rev. Mater. Sci. 1998, 28 , 153-184.
135.J. A. Rogers , R. G. Nuzzo , Mater. Today 2005, 8 , 50-56.
136.E. Menard , M. A. Meitl , Y. Sun , J.-U. Park , D. J. Shir , Y.-S. Nam, S. Jeon , J. A. Rogers, Chem. Rev. 2007, 107 , 1117-1160.
137.Q. Cao , J. A. Rogers , Adv. Mater. 2009 , 21 , 29-53.
138.T. Dürkop , S. A. Getty , E. Cobas , M. S. Fuhrer, Nano Lett. 2004 , 4 , 35-39.
139.T. W. Kelley , P. F. Baude , C. Gerlach , D. E. Ender , D. Muyres , M. A. Haase, D. E. Vogel , S. D. Theiss , Chem. Rev. 2004 , 16 , 4413-4422.
140.J. M. J. Frechet , Science 1994 , 263 , 1710-1715.
141.J. Yeom , M. A. Shannon , Adv. Funct. Mater. 2010 , 20 , 289-295.
142.S.-I. Park , Y. Xiong , R.-H. Kim , P. Elvikis , M. Meitl , D.-H. Kim , J. Wu , J. Yoon , C.-J. Yu , Z. Liu , Y. Huang , K.-C. Hwang , P. Ferreira , X. Li , K. Choquette , J. A. Rogers , Science 2009 , 325 , 977-981.
143.J.-H. Choi , K.-H. Kim , S.-J. Choi , H. H. Lee , Nanotechnology 2006 , 17 , 2246-2249 .
144.J. Yoon , A. J. Baca , S.-I. Park , P. Elvikis , J. B. Geddes III , L. Li , R. H. Kim , J. Xiao , S. Wang , T.-H. Kim , M. J. Motala , B. Y. Ahn , E. B. Duoss , J. A. Lewis , R. G. Nuzzo , P. M. Ferreira , Y. Huang , A. Rockett , J. A. Rogers , Nat. Mater. 2008, 7 , 907-915.
145.A. J. Baca , K. J. Yu , J. Xiao , S. Wang , J. Yoon , J. H. Ryu , D. Stevenson , R. G. Nuzzo , A. A. Rockett , Y. Huang , J. A. Rogers , Energy Environ. Sci. 2010, 3 , 208-211.
146.D.-H. Kim , Y.-S. Kim , J. Wu , Z. Liu , J. Song , H.-S. Kim , Y. Y. Huang , K.-C. Hwang , J. A. Rogers , Adv. Mater. 2009, 21, 3703-3707.
147.J.-H. Ahn , H.-S. Kim , K. J. Lee , S. Jeon , S. J. Kang , Y. Sun , R. G. Nuzzo , J. A. Rogers , Science 2006 , 314 , 1754-1757.
148.S. Kim , J. Wu , A. Carlson , S. H. Jin , A. Kovalsky , P. Glass , Z. Liu , N. Ahmed , S. L. Elgan , W. Chen , P. M. Ferreira , M. Sitti , Y. Huang , J. A. Rogers , Proc. Natl. Acad. Sci. U.S.A. 2010 , 107 , 17095-17100.
149.D. Chanda , K. Shigeta , S. Gupta , T. Can, A. Carlson , A. Mihi , A. J. Baca , G. R. Bogart , P. Braun , J. A. Rogers , Nat. Nanotechnol. 2011 , 6 , 402-407.
150.Q. Cao , H.-S. Kim , N. Pimparkar , J. P. Kulkarni , C. Wang , M. Shim , K. Roy , M. A. Alam , J. A. Rogers , Nature 2008 , 454 , 495-500.
151.A. Kumar and C. Zhou, ACS Nano 2010, 4, 11-14.
152.Y. Kim, T. l. Ryu, K.-H. Ok, M.-G. Kwak, S. Park, N.-G. Park, C.-J. Han, B.-S. Kim, M.-J. Ko, H.-J. Son and J.-W. Kim, Adv. Funct. Mater. 2015, 25, 4580-4589.
153.D. S. Hecht and L. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482.
154.L. Hu, H. Wu and Y. Cui, MRS Bull. 2011, 36, 760-765.
155.D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T.-I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. Mccormick, P. Liu, Y.-W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman and J. A. Rogers, Science 2011, 333, 838-843.
156.D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J. E. Lee, C. Song, S. J. Kim, D. J. Lee, S. W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C. S. Hwang, N. Lu, T. Hyeon and D.-H. Kim, Nat. Nanotechnol. 2014, 9, 397-404.
157.J. Jiu, T. Araki, J. Wang, M. Nogi, T. Sugahara, S. Nagao, H. Koga, K. Suganuma, E. Nakazawa, M. Hara, H. Uchidab and K. Shinozakic, J. Mater. Chem. A 2014, 2, 6326-6330.
158.H. Kang, S. Jung, S. Jeong, G. Kim and K. Lee, Nat. Commun. 2015, 6, 6503-6510.
159.M.-S. Lee. K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G Kim, D.-Y. Lee, S.-W. Nam and J.-U. Park, Nano Lett. 2013, 13, 2814-2821.
160.L. Hu, H.-S. Kim, J.-Y. Lee, P. Peumans and Y. Cui, ACS Nano 2010, 4, 2955-2963.
161.S. Choi, S. I. Han, D. Jung, H. J. Hwang, C. Lim, S. Bae, O. K. Park, C. M. Tschabrunn, M. Lee, S. Y. Bae, J. W. Yu, J. H. Ryu, S.-W. Lee, K. Park, P. M. Kang, W. B. Lee, R. Nezafat, T. Hyeon and D.-H. Kim, Nat. Nanotechnol. 2018, 13, 1048-1058.
162.M. Layani, A. Kamyshny and S. Magdassi, Nanoscale 2014, 6, 5581-5591.
163.D. Langley, G. Giusti, G. Mayousse, C. Celle, D. Bellet and J.-P. Simonato, Nanotechnology 2013, 24, 452001-452021.
164.C. Yan, W. Kang, J. Wang, M. Cui, X. Wang, C. Y. Foo, K. J. Chee and P. S. Lee, ACS Nano 2014, 8, 316-322.
165.H.-C. Liu, Y.-C. Lai, C.-C. Lai, B.-H. Wu, H.-W. Zan, P. Yu, Y.-L. Chueh and C.-C. Tsai, ACS Appl. Mater. Interfaces 2015, 7, 232-240.
166.D.-S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. C. Bradley and J. C.D. Mello, Adv. Mater. 2011, 23, 4371-4375.
167.H. Lee, D. Lee, Y. Ahn, E.-W. Lee, L. S. Park and Y. Lee. Nanoscale 2014, 6, 8565-8570.
168.J. Lee, P. Lee, H. B. Lee, S. Hong, I. Lee, J. Yeo, S. S. Lee, T.-S. Kim, D. Lee and S. H. Ko Adv. Funct. Mater. 2013, 23, 4171-4176.
169.Y. Joo, J. Byun, N. Seong, J. Ha, H. Kim, S. Kim, T. Kim, H. Ima, D. Kima and Y. Hong, Nanoscale 2015, 7, 6208-6215.
170.J. Song, H. Jiang, Y. Huang and J. A. Rogers, Sci. Technol. A 2009, 27, 1107-1125.
171.C. Yan, J. Wang, X. Wang, W. Kang, M. Cui, C.Y. Foo and P. S. Lee, Adv. Mater. 2013, 26, 943-950.
172.F. Xu and Y. Zhu, Adv. Mater. 2012, 24, 5117-5122.
173.S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland and J. N. Coleman, ACS Nano 2009, 3 , 1767-1774.
174.B.X.-Y. Zeng, Q.-K. Zhang, R.-M. Yu and C.Z. Lu, Adv. Mater. 2010, 22, 4484-4488.
175.A. R. Madaria, A. Kumar and C. Zhou, Nanotechnology 2011, 22, 245201-245208.
176.A. R. Madaria, A. Kumar, F. N. Ishikawa and C. Zhou, Nano Res 2010, 3, 564-573.
177.M. K. Choil, J. Yang, K. Kang, D. C. Kim, C. Choil, C. Park, S. J. Kim, S. I. Chae, T.-H. Kim, J. H. Kim, T. Hyeon and D.-H. Kim, Nat. Commun. 2015, 6, 7149-8149.
178.B. C. Yu, C. Masarapu, J. JRong, B. Wei and H. Jiang, Adv. Mater. 2009, 21, 4793-4797.
179.J. Darren, D.J. Lipomi, B.C.-K. Tee, M. Vosgueritchian and Z. Bao, Adv. Mater. 2011, 23, 1771-1775.
180.M. A. Meitl , Y. Zhou , A. Gaur , S. Jeon , M. L. Usrey , M. S. Strano , J. A. Rogers , Nano Lett. 2004 , 4 , 1643-1647.
181.T. Kraus , L. Malaquin , H. Schmid , W. Riess , N. D. Spencer , H. Wolf , Nat. Nanotechnol. 2007 , 2 , 570-576.
182.S. Y. Park , T. Kwon , H. H. Lee , Adv. Mater. 2006 , 18 , 1861-1866.
183.J.-H. Choi , K.-H. Kim , S.-J. Choi , H. H. Lee , Nanotechnology 2006 , 17 , 2246-2249.
184.J. K. Kim , J. W. Park , H. Yang , M. Choi , J. H. Choi , K. Y. Suh , Nanotechnology 2006 , 17 , 940-946.
185.Z. Wang , J. Zhang , R. Xing , J. Yuan , D. Yan , Y. Han , J. Am. Chem. Soc. 2003 , 125 , 15278-15279
186.A. C. Ford , J. C. Ho , Y.-L. Chueh , Y.-C. Tseng , Z. Y. Fan , J. Guo , J. Bokor , A. Javey , Nano Lett. 2009 , 9 , 360-365.
187.A. Javey , S. Nam , R. S. Friedman , H. Yan , C. M. Lieber , Nano Lett. 2007 , 7 , 773-777.
188.Y. Huang , X. Duan , C. Lieber , Small 2005 , 1 , 142-147.
189.O. L. Muskens , S. L. Diedenhofen , B. C. Kaas , R. E. Algra , E. P. A. M. Bakkers , J. G. Rivas , A. Lagendijk , Nano Lett. 2009 , 9 , 930-934.
190.Z. Y. Fan , J. G. Lu , Appl. Phys. Lett. 2005 , 86 , 123510-123514.
191.D. H. Zhang , Z. Liu , C. Li , T. Tang , X. Liu , S. Han , B. Lei , C. Zhou , Nano Lett. 2004 , 4 , 1919-1924.
192.K. Heo , C.-J. Kim , M.-H. Jo , S. Hong , J. Mater. Chem. 2009 , 19 , 901-908.
193.W. Lu , C. M. Lieber , J. Phys. D: Appl. Phys. 2006 , 39 , R387-R406.
194.H. J. Fan , P. Wener , M. Zacharias , Small 2006 , 2 , 700-704.
195.Y. Cui , M. T. Björk , J. A. Liddle , C. Sönnichsen , B. Boussert ,A. P. Alivisatos , Nano Lett. 2004 , 4 , 1093-1101.
196.S. De, P. E. Lyons, P. N. Nirmalraj, S. Sorel, J. J. Boland, E. M. Doherty, P. J. King, W. J. Blau, V. Scardaci, J. Joimel and J. N. Coleman, ACS Nano 2009, 3, 714-720.
197.S. H. Tan, N.-T. Nguyen, Y.C. Chua and T. G. Kang, Biomicrofluidics 2010, 4, 032204-032208.
198.J. Y. Lee, S. T. Connor, Y. Cui and P. Peumans, Nano Lett. 2008, 8, 689-692.
199.W. Xu, Q. Xu, Q. Huang, R. Tan, W. Shen and W. Song, J. Mater. Sci. Technol. 2016, 32, 158-161.
200.T. Akter and W. S. Kim, ACS Appl. Mater. Interfaces 2012, 4, 1855-1859.
201.T. Araki, J. Jiu, M. Nogi, H. Koga, S. Nagao, T. Sugahara and K. Suganuma, Nano Research 2014, 7, 236-245.
202.S.-E. Park, S. Kim, D.-Y. Lee, E. Kim and J. Hwang, J. Mater. Chem. A 2013, 1, 14286-14293.
203.V. Scardaci, R. Coull, P. E. Lyons, D. Rickard and J. N. Coleman, small 2011, 7 , 2621-2628.
204.M. Dressel and G. Gruner, Electrodynamics of Solids: Optical Properties of Electrons in Matter, Cambridge University Press, Cambridge, UK, 2002.
205.H.-S. Liu, B.-C. Pan and G.-S Liou, Nanoscale 2017, 9, 2633-2639.
206.M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci and S. Bauer, Nat. Commun. 2012, 3, 770-777.
207.J. A. Rogers, T. Someya and Y. Huang, Science 2010, 327, 1603-1607.
208.D.-H. Kim, J. Xiao, J. Song, Y. Huang and J. A. Rogers, Adv. Mater. 2010, 22, 2108-2124.
209.J. Liang, L. Li, K. Tong, Z. Ren, W. Hu, X. Niu, Y. Chen and Q. Pei, ACS Nano 2014, 8, 1590-1600.
210.J. Wang and P. S. Lee, Nanophotonics 2017, 6, 435-451.
211.Z. Yu, X. Niu, Z. Liu and Q. Pei, Adv. Mater. 2011, 23, 3989-3994.
212.J. Liang, L. Li, X. Niu, Z. Yu and Q. Pei, Nat. Photonics 2013, 7, 817-824.
213.A. Sandström, H. F. Dam, F. C. Krebs and L. Edman, Nat. Commun. 2012, 3, 1002-1007.
214.B. G. Klärner, J.-l. Lee, M. H. Davey and R. D. Miller, Adv. Mater. 1999, 11, 115-119.
215.M. D. Dickey, Adv. Mater. 2017, 1606425-1606434.
216.J. Li, S. G. R. Bade, X. Shan and Z. Yu, Adv. Mater. 2015, 27, 5196-5202.
217.Y. Lee, J. Park, S. Cho, Y. E. Shin, H. Lee, J. Kim, J. Myoung, S. Cho, S. Kang, C. Baig, H. Ko, ACS Nano 2018, 12, 4045-4054.
218.T. Q. Trung, N. E. Lee, Adv. Mater. 2016, 28, 4338-4372.
219.S. Wang, J. Y. Oh, J. Xu, H. Tran, Z. Bao, Acc. Chem. Res. 2018, 51, 1033-1045.
220.T. Cheng, Y. Zhang, W. Y. Lai, W. Huang, Adv. Mater. 2015, 27, 3349-3376.
221.T. H. Chang, K. Li, H. Yang, P. Y. Chen, Adv. Mater. 2018, 30, 1802418-1802431.
222.X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, Z. L. Wang, Adv. Sci. 2015, 2, 1500169-1500180.
223.Son, D.; Lee, J.; Qiao, S.; Ghaffari, R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, W.; Yang, S.; Park, M.; Shin, J.; Do, K.; Lee, M.; Kang, K.; Hwang, C. S.; Lu, N.; Hyeon, T.; Kim, D.-H. Nat. Nanotechnol. 2014, 9, 397-404.
224.D. Son, Z. Bao, ACS Nano 2018, 12, 11731-11739.
225.C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro, L. Beccai, B. Mazzolai, R. Shepherd, Science 2016, 351, 1071-1074.
226.D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, Science 2011, 333, 838-843.
227.K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, A. Javey, Nat. Mater. 2010, 9, 821-826.
228.C.nh. Pang, J. H. Koo, A. Nguyen, J. M. Caves, M.‐G. Kim, A. Chortos, K. Kim, P. J. Wang, J. B.‐H. Tok, Z. Bao, Adv. Mater. 2014, 27, 634-640
229.R. Feiner, L. Engel, S. Fleischer, M. Malki, I. Gal1, A. Shapira, Y. S.-D., T. Dvir, Nat. Mater. 2016, 15, 679-685.
230.T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. I.-N, D. N. Futaba, K. Hata, Nat. Nanotechnol. 2011, 6, 296-301.
231.B. You, C. J. Han, Y. Kim, B. K. Ju, J. W. Kim, J. Mater. Chem. A 2016, 4, 10435-10443.
232.S. Jun, C. J. Han, Y. Kim, B. K. Ju, J. W. Kim, J. Mater. Chem. A 2017, 5, 3221-3229.
233.J.-W. Jeong, W.-H. Yeo, A. Akhtar, J. J. S. Norton, Y.-J. Kwack, S. Li, S.-Y. Jung, Y. Su, W. Lee , J. Xia, H. Cheng, Y. Huang, W.-S. Choi, T. Bretl, J. A. Rogers, Adv. Mat. 2013, 25, 6839-6846.
234.Y. Yang, H. Zhang, Z.-H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu, Z. L. Wang, ACS Nano 2013, 7, 9213-9222.
235.F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z. L. Wang, Nano Lett. 2012, 12, 3109-3114.
236.C. Pan , L. Dong , G. Zhu , S. Niu , R. Yu , Q. Yang , Y. Liu , Z. L. Wang, Nat. Photonics 2013 , 7 , 752-758.
237.Q. Liu, J. Chen, Y. Li, G. Shi, ACS Nano 2016, 10, 7901-7906.
238.J. Zhong, Q. Zhong, Q. Hu, N. Wu, W. Li, B. Wang, B. Hu, J. Zhou, Adv. Funct. Mater. 2015, 25, 1798-1803.
239.C. Pang, G.-Y. Lee, T.-i. Kim, S. M. Kim, H. N. Kim, S.-H Ahn, K.-Y. Suh, Nat. Mater. 2012, 11, 795-801.
240.M. Vural, A. M. Behrens, O. B. Ayyub, J. J. Ayoub, P. Kofinas, ACS Nano. 2015, 9, 336-342.
241.Y. Tang , S. Gong, Y. Chen, L. W. Yap, W. L. Cheng, ACS Nano 2014, 8 , 5707-5714.
242.F.-C. Liang, Y.-W. Chang, C.-C. Kuo, C.-J. Cho, D.-H. Jiang, F.-C. Jhuang, S.-P. Rweia, R. Borsali, Nanoscale 2019, 11, 1520-1530.
243.M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. B. Shim, S. Jeon, D. Y. Chung, J. Bae, U. Jeong, K. Kim, Nat. Nanotechnol. 2012, 7, 803-809.
244.J. Lee, H. Kwon, J. Seo, S. Shin, J. H. Koo, C. Pang, S. Son, J. H. Kim, Y. H. Jang, D. E. Kim, T. Lee, Adv. Mater. 2015, 27, 2433-2439.
245.C.-L. Choong, M.-B. Shim, B.-S Lee, S. Jeon, D.-S Ko, T.-H. Kang, J. Bae, S. H. Lee, K.-E. Byun, J. Im, Y. J. Jeong, C. E. Park, J.-J. Park, U.-I. Chung, Adv. Mater. 2014, 26, 3451-3458.
246.H.-H. Chou, A. Nguyen, A. Chortos, J. W.F. To, C. Lu, J. Me, T. Kurosawa, W.-G. Bae, J. B.-H. Tok, Z. Bao, Nat. Commun. 2015, 6, 8011-8021.
247.G. Y. Bae, S. W. Pak, D. Kim, G. Lee, D. H. Kim, Y. Chung, K. Cho, Adv. Mater. 2016, 28, 5300-5306.
248.S. C. B. Mannsfeld, B. C-K. Tee, R. M. Stoltenberg, C. V. H-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, Z. Bao, Nature Materials 2010, 9, 859-864.
249.F. R. Fan , L. Lin , G. Zhu, W. Wu, R. Zhang, Z. L. Wang, Nano. Lett. 2012, 12, 3109-3114.
250.L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, Z. N. Bao, Nat. Commun. 2014, 5, 3002-3010.
251.J. Park, Y. Lee, J. Hong, Y. Lee, M. Ha, Y. Jung, H. Lim, S. Y. Kim, H. Ko, Acs Nano. 2014, 8, 12020-12029.
252.J. Park, J. Kim, J. Hong, H. Lee, Y. Lee, S. Cho, S.-W. Kim, J. J. Kim, S. Y. Kim. H. Ko, NPG Asia Materials 2018, 10, 163-176.
253.F.-C. Liang, C.-C. Kuo, B.-Y. Chen, C.-J. Cho, C.-C. Hung, W.-C. Chen, R. Borsali, ACS Appl. Mater. Interfaces 2017, 9, 16381-16396.
254.Y.-C. Chiu, Y. Chen, C.-C. Kuo, S.-H. Tung, T. Kakuchi, W.-C. Chen, ACS Appl. Mater. Interfaces 2012, 4, 3387-3395.
255.J.-Y. Chen, C.-C. Kuo, C.-S. Lai, W.-C. Chen, H.-L. Chen, Macromolecules 2011, 44, 2883-2892.
256.X. Fan, N. Wang, F. Yan, J. Wang, W. Song, Z. Ge, Adv. Mater.Technol. 2018, 3, 1800628-1800653.
257.S. Chen, R. Wu, P. Li, Q. Li, Y. Gao, B. Qian, F. Xuan, ACS Appl.Mater. Interfaces 2018, 10, 37760-37766.
258.X. Fang, J. Tan, Y. Gao, Y. Lu, F. Xuan, Nanoscale 2017, 9, 17948-17956.
259.L. Li, H. Xiang, Y. Xiong, H. Zhao, Y. Bai, S. Wang, F. Sun, M. Hao, L. Liu, T. Li, Z. Peng, J. Xu, T. Zhang, Adv. Sci. 2018, 5, 1800558-1800567
260.M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Adv. Funct. Mater. 2016, 26, 1678-1698.
261.S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin, Q. Liu, T. Yokota, T. Sekitani, T. Isoyama, Y. Abe, Z. Suo, T. Someya, Nat. Nanotechnol.2016, 11, 472-478.
262.X. Q. Liao, Z. Zhang, Z. Kang, F. F. Gao, Q. L. Liao, Y. Zhang, Mater. Horiz. 2017, 4, 502-510.
263.Tee, B. C. K., Wang, C., Allen, R. Bao, Z., Nat. Nanotechn. 2012, 7, 825-832.
264.L. Pan1, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, Z. Bao., Nature Communications 2014, 5, 3002-3010.
265.S. Zhao, J. Li, D. Cao, Y. Gao, W. Huang, G. Zhang, R. Sun, C.-P. Wong, J. Mater. Chem. C, 2016, 4, 6666-6674.
266.C. Pang, J. H. Koo, A. Nguyen, J. M. Caves, M.-G. Kim, A. Chortos, K. Kim, P. J. Wang, J. B.-H. Tok, Z. Bao, Adv. Mater. 2015, 27, 634-640.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top