|
[1] P.-Y. Chen, J. McKittrick, and M. A. Meyers, “Biological materials: Functional adaptations and bioinspired designs,” Prog. Mater. Sci., vol. 57, no. 8, pp. 1492–1704, Nov. 2012. [2] M. A. Meyers, J. McKittrick, and P.-Y. Chen, “Structural biological materials: critical mechanics-materials connections.,” Science, vol. 339, no. 6121, pp. 773–9, Feb. 2013. [3] J. Shigley, C. Mischke, and T. Brown, “Standard Handbook of Machine Design.” McGraw-Hill, 2004. [4] M. A. Meyers, P.-Y. Chen, A. Y.-M. Lin, and Y. Seki, “Biological materials: Structure and mechanical properties,” Prog. Mater. Sci., vol. 53, no. 1, pp. 1–206, Jan. 2008. [5] P. Fratzl, “Biomimetic materials research: what can we really learn from nature’s structural materials,” J. R. Soc. Interface, vol. 4, no. 15, pp. 637–42, Aug. 2007. [6] H. M. F. MD, “Wolff’s Law and bone's structural adaptations to mechanical usage: an overview for clinicians,” The Angle Orthodbtist, vol. 64, no. 3, pp. 175–188, 1994. [7] A. P. Jackson, J. F. V. Vincent, and R. M. Turner, “The Mechanical Design of Nacre,” Proc. R. Soc. B Biol. Sci., vol. 234, no. 1277, pp. 415–440, Sep. 1988. [8] R. Wang, Z. Suo, A. G. Evans, N. Yao, and I. Aksay, “Deformation mechanisms in nacre,” J. Mater. Res, vol. 16, no. 9, pp. 2485–2493, 2001. [9] X. Li, W.-C. Chang, Y. J. Chao, R. Wang, and M. Chang, “Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone,” Nano Lett., vol. 4, no. 4, pp. 613–617, Apr. 2004. [10] F. Barthelat, H. Tang, P. Zavattieri, C. Li, and H. Espinosa, “On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure,” J. Mech. Phys. Solids, vol. 55, no. 2, pp. 306–337, Feb. 2007. [11] M. A. Meyers, A. Y.-M. Lin, P.-Y. Chen, and J. Muyco, “Mechanical strength of abalone nacre: role of the soft organic layer.,” J. Mech. Behav. Biomed. Mater., vol. 1, no. 1, pp. 76–85, Jan. 2008. [12] H. D. Espinosa, A. L. Juster, F. J. Latourte, O. Y. Loh, D. Gregoire, and P. D. Zavattieri, “Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials.,” Nat. Commun., vol. 2, no. 2:173, Jan. 2011. [13] J. Sun and B. Bhushan, “Hierarchical structure and mechanical properties of nacre: a review,” RSC Adv., vol. 2, no. 20, pp. 7617–7632, 2012. [14] R. Menig, M. H. Meyers, M. a. Meyers, and K. S. Vecchio, “Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells,” Acta Mater., vol. 48, no. 9, pp. 2383–2398, May 2000. [15] A. P. Jackson, J. F. V. Vincent, and R. M. Turner, “Comparison of nacre with other ceramic composites,” J. Mater. Sci., vol. 25, pp. 3173–3178, 1990. [16] B. Zhang, H.-F. Tan, J.-W. Yan, M.-D. Zhang, X.-D. Sun, and G.-P. Zhang, “Microstructures and mechanical performance of polyelectrolyte/nanocrystalline TiO2 nanolayered composites.,” Nanoscale Res. Lett., vol. 8:44, Jan. 2013. [17] Z. Burghard, L. Zini, V. Srot, P. Bellina, P. a Van Aken, and J. Bill, “Toughening through nature-adapted nanoscale design.,” Nano Lett., vol. 9, no. 12, pp. 4103–4108, Dec. 2009. [18] M. Ohring, Materials Science of Thin Films, 2nd ed. Elsevier Science, 2001. [19] L. C. F. K.N. Tu, J.W. Mayer, Electronic Thin Film Science—for Electrical Engineers and Materials Scientists. NewYork: Macmillan, 1992. [20] M. Ohring, Materials Science of Thin Films. . [21] U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, “Ionized physical vapor deposition (IPVD): A review of technology and applications,” Thin Solid Films, vol. 513, no. 1–24, Aug. 2006. [22] J. Musil, P. Baroch, J. Vlček, K. H. Nam, and J. G. Han, “Reactive magnetron sputtering of thin films: present status and trends,” Thin Solid Films, vol. 475, pp. 208–218, Mar. 2005. [23] W. D. Sproul, D. J. Christie, and D. C. Carter, “Control of reactive sputtering processes,” Thin Solid Films, vol. 491, pp. 1–17, Nov. 2005. [24] H. Biederman, “RF sputtering of polymers and its potential application,” Vacuum, vol. 59, pp. 594–599, Nov. 2000. [25] K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art,” Surf. Coatings Technol., vol. 204, pp. 1661–1684, Feb. 2010. [26] D. Ochs, “HIPIMS Power for Improved Thin Film Coatings,” Vak. Forsch. und Prax., vol. 20, no. 4, pp. 34–38, Aug. 2008. [27] J. Alami, S. Bolz, and K. Sarakinos, “High power pulsed magnetron sputtering: Fundamentals and applications,” J. Alloys Compd., vol. 483, pp. 530–534, Aug. 2009. [28] M. Samuelsson, D. Lundin, K. Sarakinos, F. Björefors, B. Wälivaara, H. Ljungcrantz, and U. Helmersson, “Influence of ionization degree on film properties when using high power impulse magnetron sputtering,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 30, no. 3, pp. 031507–1 – 03107–5, 2012. [29] N. Adachi, V. P. Denysenkov, S. I. Khartsev, A. M. Grishin, and T. Okuda, “Epitaxial Bi3Fe5O12 (001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques,” J. Appl. Phys., vol. 88, no. 5, pp. 2734–2739, 2000. [30] L. W. Martin, Y.-H. Chu, and R. Ramesh, “Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films,” Mater. Sci. Eng. R Reports, vol. 68, pp. 89–133, May 2010. [31] M. Rubin, S.-J. Wen, T. Richardson, J. Kerr, K. von Rottkay, and J. Slack, “Electrochromic lithium nickel oxide by pulsed laser deposition and sputtering,” Sol. Energy Mater. Sol. Cells, vol. 54, pp. 59–66, Jul. 1998. [32] B. Roast, L. Schultz, and G. Endres, “Superconducting properties of laser evaporated expotaxial Y-Ba-Cu-O thin film,” J. Less-Common Met., vol. 151, pp. 413–418, 1989. [33] S. B. Ogale, D. Dijkkamp, T. Venkatesan, X. D. Wu, and A. Inam, “Current transport in high-Tc polycrystalline film of Y-Ba-Cu-O,” Phys. Rev. B, vol. 36, no. 13, pp. 7210–7213, 1987. [34] R. Eason, Pulsed laser deposition of thin films. Wiley-Interscience, 2007. [35] V. Nelea, C. Morosanu, M. Iliescu, and I. N. Mihailescu, “Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study,” Appl. Surf. Sci., vol. 228, pp. 346–356, Apr. 2004. [36] Y. Tsuboi, M. Goto, and A. Itaya, “Pulsed laser deposition of silk protein: Effect of photosensitized-ablation on the secondary structure in thin deposited films,” J. Appl. Phys., vol. 89, no. 12, pp. 7917–7924, 2001. [37] L. Stamatin, R. Cristescu, G. Socol, A. Moldovan, D. Mihaiescu, I. Stamatin, I. N. Mihailescu, and D. B. Chrisey, “Laser deposition of fibrinogen blood proteins thin films by matrix assisted pulsed laser evaporation,” Appl. Surf. Sci., vol. 248, pp. 422–427, Jul. 2005. [38] D. B. Chrisey, a Piqué, R. a McGill, J. S. Horwitz, B. R. Ringeisen, D. M. Bubb, and P. K. Wu, “Laser deposition of polymer and biomaterial films.,” Chem. Rev., vol. 103, no. 2, pp. 553–76, Feb. 2003. [39] A. Pique, P. Wu, B. R. Ringeisen, D. M. Bubb, J. S. Melinger, R. A. Mcgill, and D. B. Chrisey, “Processing of functional polymers and organic thin films by the matrix-assisted pulsed laser evaporation (MAPLE) technique,” Appl. Surf. Sci., vol. 186, pp. 408–415, 2002. [40] B. Ringeisen, J. Callahan, P. Wu, and A. Pique, “Novel laser-based deposition of active protein thin films,” Langmuir, no. 17, pp. 3472–3479, 2001. [41] S. T. Li, E. Arenholz, J. Heitz, and D. Buuerle, “Pulsed-laser deposition of crystalline Teflon ( PTFE ) films,” Appl. Surf. Sci., vol. 125, no. 1, pp. 17–22, 1998. [42] A. A. Voevodin and M. S. Donley, “Preparation of amorphous diamond-like carbon by pulsed laser deposition: a critical review,” Surf. Coatings Technol., vol. 82, no. 3, pp. 199–213, Aug. 1996. [43] A. A. Voevodin, M. S. Donley, and J. S. Zabinski, “Pulsed laser deposition of diamond-like carbon wear protective coatings : a review,” Surf. Coatings Technol., vol. 92, pp. 42–49, 1997. [44] E. L. Tobolski, W. I. Division, I. Corporation, A. Fee, and R. Scales, “Macroindentation Hardness Testing,” in ASM Handbook, 2000, pp. 203–211. [45] A. C. Fischer-Cripps, Nanoindentation, Third. Springer, 2011. [46] S. Veprek, A. Niederhofer, K. Moto, T. Bolom, P. Nesladek, G. Dollinger, and A. Bergmaier, “Composition , nanostructure and origin of the ultrahardness in nc-TiN r a-Si 3 N 4 r a- and nc-TiSi 2 nanocomposites with H V s 80 to G 105 GPa,” Surf. Coatings Technol., vol. 133–134, pp. 152–159, 2000. [47] H. Holleck and V. Schier, “Multilayer PVD coatings for wear protection TiC / TiB2 r,” Surf. Coatings Technol. Coatings Technol., vol. 76–77, pp. 328–336, 1995. [48] S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: a review,” Surf. Coatings Technol., vol. 167, pp. 113–119, Apr. 2003. [49] K. Ma, A. Bloyce, R. A. Andrievski, and G. V. Kalinnikov, “Microstructural response of mono- and multilayer hard coatings during indentation microhardness testing,” Surf. Coatings Technol., vol. 94–95, pp. 322–327, 1997. [50] P. Mayrhofer and C. Mitterer, “Microstructural design of hard coatings,” Prog. Mater. Sci., vol. 51, pp. 1032–1114, Nov. 2006. [51] J. Musil, “Hard and superhard nanocomposite coatings,” Surf. Coatings Technol., vol. 125, pp. 322–330, Mar. 2000. [52] J. A. Dobrowolski, “OPTICAL PROPERTIES OF FILMS AND COATINGS,” in From Handbook of Optics: Fundamentals, Techniques, and Design,, Second., McGraw-Hill, 1994. [53] B. M. Clemens, H. Kung, and S. A. Barnett, “Structure and strength of multilayers,” MRS Bull., pp. 20–26, 1999. [54] D. Wang, Y. Ni, Q. Huo, and D. E. Tallman, “Self-assembled monolayer and multilayer thin films on aluminum 2024-T3 substrates and their corrosion resistance study,” Thin Solid Films, vol. 471, pp. 177–185, Jan. 2005. [55] T. Farhat and J. Schlenoff, “Corrosion control using polyelectrolyte multilayers,” Electrochem. solid-state Lett., vol. 5, no. 4, pp. B13–B15, 2002. [56] R. Hübler, A. Schröer, W. Ensinger, G. K. Wolf, W. H. Schreiner, and I. J. R. Baumvol, “Plasma and ion-beam-assisted deposition of multilayers for tribological and corrosion protection,” Surf. Coatings Technol., vol. 60, pp. 561–565, Oct. 1993. [57] H. Macleod, Thin-film optical filters. 2001. [58] E. Hecht, Optics, 4 edition. Addison-Wesley, 2001. [59] M. Ylilammi and T. Ranta-aho, “Optical determination of the film thicknesses in multilayer thin film structures,” Thin Solid Films, vol. 232, pp. 56–62, Sep. 1993. [60] G. E. Dieter, Mechanical Metallurgy. McGraw-Hill, 1976. [61] R. Hübler, A. Cozza, and T. Marcondes, “Wear and corrosion protection of 316-L femoral implants by deposition of thin films,” Surf. Coatings Technol., vol. 142–144, pp. 1078–1083, 2001. [62] R. Hübler, “Characterisation of gradient interfaces in thin film multilayers used to protect orthopaedic implants,” Surf. Coatings Technol., vol. 116–119, pp. 1116–1122, Sep. 1999. [63] U. Wiklund, P. Hedenqvist, and S. Hogmark, “Multilayer cracking resistance in bending,” Surf. Coatings Technol., vol. 97, pp. 773–778, Dec. 1997. [64] D. K. Leung, M. Y. He, and A. G. Evans, “The cracking resistance of nanoscale layers and films,” J. Mater. Res., vol. 10, no. 07, pp. 1693–1699, Mar. 1995. [65] American Society for Testing and Materials, “Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K Ic of Metallic Materials,” pp. 1–33, 2013. [66] S. Zhang and X. Zhang, “Toughness evaluation of hard coatings and thin films,” Thin Solid Films, vol. 520, pp. 2375–2389, Jan. 2012. [67] G. Jaeger, I. Endler, M. Heilmaier, K. Bartsch, and a Leonhardt, “A new method of determining strength and fracture toughness of thin hard coatings,” Thin Solid Films, vol. 377–378, pp. 382–388, Dec. 2000. [68] Z. Jiang, F. . Lu, W. . Tang, S. . Wang, Y. . Tong, T. . Huang, and J. . Liu, “Accurate measurement of fracture toughness of free standing diamond films by three-point bending tests with sharp pre-cracked specimens,” Diam. Relat. Mater., vol. 9, pp. 1734–1738, Sep. 2000. [69] X. Li, D. Diaot, and B. Bhushans, “FRACTURE MECHANISMS OF THIN AMORPHOUS CARBON FILMS IN NANOINDENTATION,” Acta Mater., vol. 45, no. 11, pp. 4453–4461, 1997. [70] X. Zhang and S. Zhang, “Rethinking the role that the ‘step’ in the load–displacement curves can play in measurement of fracture toughness for hard coatings,” Thin Solid Films, vol. 520, pp. 3423–3428, Feb. 2012. [71] G. M. Pharr, “Measurement of mechanical properties by ultra-low load indentation,” Mater. Sci. Eng. A, vol. A253, pp. 151–159, Sep. 1998. [72] Z. Xia, W. A. Curtin, and B. W. Sheldon, “A new method to evaluate the fracture toughness of thin films,” Acta Mater., vol. 52, pp. 3507–3517, 2004. [73] S. Sundararajan and B. Bhushan, “Development of a continuous microscratch technique in an atomic force microscope and its application to study scratch resistance of ultrathin hard amorphous carbon coatings,” J. Mater. Res., vol. 16, no. 02, pp. 437–445, Jan. 2011. [74] A. A. Voevodin and J. S. Zabinski, “Supertough wear-resistant coatings with ` chameleon ’ surface adaptation,” vol. 370, pp. 223–231, 2000. [75] H. Huang, W. W. Gerberich, J. W. Hoehn, and S. K. Venkataraman, “Micromechanical toughness test applied to NiAl,” Mater. Sci. Eng. A, vol. A192/193, pp. 301–308, 1995. [76] S. Zhang, D. Sun, Y. Fu, and H. Du, “Toughness measurement of thin films: a critical review,” Surf. Coatings Technol., vol. 198, pp. 74–84, Aug. 2005. [77] R. Consiglio, N. X. Randall, B. Bellaton, and J. Von Stebut, “The nano-scratch tester (NST) as a new tool for assessing the strength of ultrathin hard coatings and the mar resistance of polymer films,” Thin Solid Films, vol. 332, pp. 151–156, 1998. [78] S. Zhang, D. Sun, Y. Fu, and H. Du, “Toughness measurement of ceramic thin films by two-step uniaxial tensile method,” Thin Solid Films, vol. 469–470, pp. 233–238, Dec. 2004. [79] U. G. K. Wegst and M. F. Ashby, “The mechanical efficiency of natural materials,” Philos. Mag., vol. 84, no. 21, pp. 2167–2181, Jul. 2004. [80] H. D. Espinosa, J. E. Rim, F. Barthelat, and M. J. Buehler, “Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials,” Prog. Mater. Sci., vol. 54, pp. 1059–1100, Nov. 2009. [81] G. Mayer, “New classes of tough composite materials—Lessons from natural rigid biological systems,” Mater. Sci. Eng. C, vol. 26, pp. 1261–1268, Sep. 2006. [82] A. A. Voevodin, M. A. Capano, S. J. . Laube, M. S. Donley, and J. S. Zabinski, “Design of a Ti/TiC/DLC functionally gradient coating based on studies of structural transitions in Ti–C thin films,” Thin Solid Films, vol. 298, pp. 107–115, Apr. 1997. [83] W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res., vol. 19, no. 01, pp. 3–20, Mar. 2011. [84] M. Jirout and J. Musil, “Effect of addition of Cu into ZrOx film on its properties,” Surf. Coatings Technol., vol. 200, pp. 6792–6800, Aug. 2006. [85] S. Zhang, D. Sun, Y. Fu, and H. Du, “Toughening of hard nanostructural thin films: a critical review,” Surf. Coatings Technol., vol. 198, pp. 2–8, Aug. 2005. [86] S. Huang and X. Zhang, “Gradient residual stress induced elastic deformation of multilayer MEMS structures,” Sensors Actuators A Phys., vol. A134, pp. 177–185, Feb. 2007. [87] P. Fratzl, H. S. Gupta, F. D. Fischer, and O. Kolednik, “Hindered Crack Propagation in Materials with Periodically Varying Young’s Modulus—Lessons from Biological Materials,” Adv. Mater., vol. 19, pp. 2657–2661, Sep. 2007.
|