跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 14:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張瑜庭
研究生(外文):ZHANG,YU-TING
論文名稱:兩種變異係數快速轉換抽樣系統之比較
論文名稱(外文):Comparisons between Two Types of Quick Switching Sampling System Based on the Coefficient of Variation Index
指導教授:嚴建和嚴建和引用關係
指導教授(外文):YAN,CHING-HO
口試委員:曾俊洲林瑞益嚴建和
口試委員(外文):ZENG,JUN-ZHOULIN,RUI-YIYAN,CHING-HO
口試日期:2019-07-24
學位類別:碩士
校院名稱:華梵大學
系所名稱:工業工程與經營資訊學系碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:39
中文關鍵詞:快速轉換抽樣系統變異係數作業特性曲線生產者風險消費者風險
外文關鍵詞:Quick switching sampling systemcoefficient of variationoperating characteristic curveproducer's riskconsumer's risk
IG URL:
Facebook:tako830529@yahoo.com.tw
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
抽樣檢驗計畫在品質管制領域裡扮演著非常重要的角色,其提供買賣雙方一個貨批判斷的決策方法,廣泛地應用於原物料、半成品、成品與出貨之檢驗上。在本研究論文裡,我們以變異係數(CV)指標建構兩種不同型態的快速轉換抽樣系統,此兩種抽樣系統均由正常檢驗與加嚴檢驗所組成。型態一系統表示正常檢驗與加嚴檢驗的允收值不同,但樣本數相同;型態二系統則是正常檢驗與加嚴檢驗的允收值相同,但樣本數不同。本抽樣系統之設計是在滿足作業特性曲線(OC 曲線)的兩點原則並使的樣本數最小化之條件下,決定抽樣計畫所需的樣本數和允收值。基於實用性之目的,在給定一般常用的生產者風險、消費者風險以及品質水準下,我們提供抽樣系統之抽樣計畫參數表。此外,我們以樣本數和 OC 曲線作為績效評估指標,對本抽樣系統與現有 CV 抽樣檢驗計畫進行比較分析。研究結果顯示,型態一系統具有較佳的績效表現,其檢驗樣本數顯著低於其他抽樣檢驗計畫,可以節省大量的檢驗成本。
Sampling inspection plan plays a very important role on quality control, which provides both buyer and seller a decision method of lot sentencing, extensively applied in the inspection of raw materials, semi-products, finished-products and outgoing. In this research, we develop two types of quick switching sampling system based on coefficient of variation (CV), and the two types of systems are composed of normal inspection and tighten inspection. Type I system means the acceptance value of normal inspection differs from that of tighten inspection while their sample size is the same. Type II system means the acceptance value of normal inspection is the same to that of tighten inspection while their sample size is different. The sample size and critical acceptance values of the proposed plan are determined by minimizing the sample size under the condition of satisfying the two-points of operating characteristic (OC) curve. For practical purpose, the parameters of the proposed plan are provided for some combinations of quality levels with commonly used producer's risk and consumer's risk. In addition, the proposed plan is compared with the existing sampling inspection plans based on CV in terms of sample size and OC curve. Research results shows that type I system has a better performance that has a smaller sample size significantly than those of other sampling inspection plans, which can save lots of inspection costs.
目錄 I
圖目錄 III
表目錄 IV
第一章緒論 1
1.1研究背景與動機 1
1.2研究目的 3
1.3研究範圍與限制 4
1.4研究內容與架構 4
第二章文獻探討 6
2.1快速抽樣系統 6
2.2變異係數指標 10
第三章研究方法 12
3.1變異係數指標 12
3.2作業特性曲線 13
3.3快速轉換抽樣 14
3.4建構快速轉換抽樣計畫 18
第四章 案例分析 22
4.1數值案例分析 22
4.1.1抽樣計畫參數表 22
4.1.2抽樣檢驗計畫之比較與分析 23
4.2實例應用說明 31
第五章結論與建議 35
5.1研究成果 35
5.2未來方向 36
參考文獻 37
1. 賴漢謜(2017)。變異係數指標之快速轉換抽樣系統。華梵大學工業工程與經營資訊學系碩士論文
2. Aslam, M., Yen, C.H. and Jun, C. H. ( 2011 ). Variable Repetitive Group Sampling Plans with Process Loss Consideration. Journal of Statistical Computation and Simulation, 81(11), 1417-1432.
3. Aslam, M., Yen, C.H., Chang, C. H. and Jun, C. H. (2013). Multiple States Repetitive Group Sampling Plans with Process Loss Consideration. Applied Mathematical Modelling, 37, 9063-9075.
4. Balamurali, S. and Usha, M. (2012a). Optimal designing of a variables quick switching sampling system by minimizing the average sample number. Journal of Applied Statistical Science, 19(3), 55-66.
5. Balamurali, S. and Usha, M. (2012b). Variables quick switching system with double specification limits International Journal of Reliability. Quality and Safety Engineering. 19(2), 125008-1-17.
6. Balamurali, S. and Usha, M. (2014). Optimal designing of variables quick switching system based on the process capability index Cpk. Journal of Industrial and Production Engineering, 31(2), 85-94.
7. Balamurali, S. and Usha, M. (2016a). Designing Of variables quick switching sampling system by considering process loss functions. Communications in Statistics-Theory and Methods, 46(5).2299-2324.
8. Balamurali, S. and Usha, M. (2016b). Developing and designing of an efficient variables sampling system based on the process capability index. Journal of Applied Statistical Science, 87(7).1401-1415.
9. Castagliola, P., Amdouni, A., Taleb, H. and Celano, G. (2015). One-sided shewhart-type charts for monitoring the coefficient of variation in short production runs. Quality Technology Quantitative Management, 12(1), 53-67.
10. Calzada, M. E. and Scariano, S. M. (2013). A synthetic control chart for the coefficient of variation. Journal of Statistical Computation and Simulation, 83(5), 853–867.
11. Dodge, H.F.(1967).A Dual System of Acceptance Sampling Technical Report No.16.New Brunswick NJ: The Statistics Center, Rutgers-The Stat University.
12. Gomez, K.A. and Gomez, A.A. (1984). Statistical Procedures for Agricultural Research, 2nd ed, New York: John Wiley and Sons, Inc.
13. Govindaraju, K. and Kuralmani, V. (1992). Modified tables for the selection of qss–1 quick switching system for a given (AQL, LQL). Communications in Statistics-Simulation and Computation, 21(4), 1103-1123.
14. Iglewicz, B., Myers, R. and Howe, R. (1968). On the percentage points of the sample coefficient of variation. Biometrika, 55, 580-581.
15. Kang, C.W., Lee, M., Seong, Y. and Hawkins, D. (2007). A control chart for the coefficient of variation. Journal of Quality Technology, 39, 151-158.
16. Kumar, R. S., Indra, M. and Radhakrishnan, R. (2012). Selection of mixed sampling plan with QSS-1 (n; c N, c T) plan as attribute plan indexed through MAPD and LQL. Indian Journal of Science and Technology, 5(2), 2096-2099.
17. Liu, S. W. and Wu, C. W. (2016). A quick switching sampling system by variables for controlling lot fraction nonconforming. International Journal of Production Research, 54(6), 1839-1849.
18. Pearn, W. L. and Wu, C. W. (2006). Critical acceptance values and sample sizes of a variables sampling plan for very low fraction of defectives. Omega - International Journal of Management Science, 34(1), 90-101.
19. Pearn, W. L. and Wu, C. W. (2007). An effective decision making method for product acceptance. Omega – International Journal of Management Science, 35(1), 12-21.
20. Romboski, L. D. (1969). An investigation of quick switching acceptance sampling system. Doctoral diss., Rutgers – The State University, New Brunswick, NJ.
21. Senthilkumar, D., Ganesan, R. and Raffie, B. E. (2013). Construction and selection of single sampling quick switching variables system for given control limits involving minimum sum of risks. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 2(5), 1789-1800.
22. Senthilkumar, D., Manjula, D. and Raffie, B. E. (2016). The construction and selection of tightening sample size of quick switching variables sampling systems involving minimum sum of the risks.  The journal of applied research, 2(4), 104-111.
23. Steel, R.G.D. and Torrie, J.H. (1980). Principles and Procedures of Statistics: a Biometrical Approach, 2nd ed, New York: McGraw-Hill.
24. Taye, G. and Njuho, P. (2008). Monitoring field variability using confidence interval for coefficient of variation. Communications in Statistics: Theory and Methods, 37(6), 831–846.
25. Tong, Y. and Chen, Q. (1991). Sampling inspection by variables for coefficient of variation. Mathematical Theory and Applied Probability, 3, 315-327(in Chinese).
26. Wu, C. W. and Liu, S.W. (2014). Developing a Sampling Plan by Variables Inspection for Controlling Lot Fraction of Defectives. Applied Mathematical Modelling, 38(9-10), 2303-2310.
27. Yan, A., Liu, S. and Dong, X. (2016). Sampling inspection by variables for coefficient of variation. Mathematical Theory and Applied Probability, 10(1), 1-2 (in Chinese).
28. Yen, C. H. and Chang, C. H. (2009). Designing Variables Sampling Plans with Process Loss Consideration. Communications in Statistics: Simulation and Computation, 38, 1579-1591.
29. Yen, C. H., Aslam, M. and Jun, C. H (2014). A Lot Inspection Sampling Plan Based on EWMA Yield Index. International Journal of Advanced Manufacturing Technology, 75, 861-868.
30. Yen, C. H., Chang, C. H. and Aslam, M. (2015). Repetitive Variable Acceptance Sampling Plan for One-Sided Specification. Journal of Statistical Computation and Simulation, 85(6), 1102-1116.
31. Yen, C. H., Chang, C. H., Aslam, M. and Jun, C. H. (2018). Multiple Dependent State Repetitive Sampling Plans for One-Sided process capability indices. Communications in Statistics -Theory and Methods, 47(6), 1403-1412.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊