跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/24 13:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊承偉
研究生(外文):Cheng-Wei Yang
論文名稱:450 mm晶圓傳送盒凝結性及酸性分子污染物即時監測技術
論文名稱(外文):Real-time Monitoring Technology on the Condensable and Acid Molecular Contamination for 450 mm Wafer Carrier
指導教授:胡石政
口試委員:薛人瑋康弘田德之蘇昭瑾
口試日期:2013-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:43
中文關鍵詞:晶圓傳送盒光離子化檢測器光腔衰盪光譜分析儀
外文關鍵詞:Front Opening Unified Pods (FOUP)Cavity Ring-Down Spectroscopy (CRDS)Photoionization Detector (PID)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:419
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
半導體製程IC線幅日趨細微化之下,氣態分子汙染物的控制成為重要之課題。晶圓盒在儲存及運送的過程中,若含有AMC存在於晶圓盒內部,將會汙染晶圓導致良率下降。晶圓盒內部的AMC有可能是前次製程殘留,或是內部晶圓的交叉污染。因此若能及時監控晶圓盒內部的AMC濃度,藉以判斷其乾淨與否,便能避免使用已受汙染的晶圓盒裝載晶圓造成良率下降。
過去有很多量測AMC的方法都有明顯的局限性,包括難以有即時監測能力及靈敏度、準確度、操作的複雜性、停機和維護成本等考量。晶圓盒的晶片儲存和運輸之AMC 追蹤量測必要性在於需要快速和簡易的方法,與自動線上即時量測和容易操作取樣收集。對於AMC 在ppb 或ppt 等級之固定監測有清楚的需要,來保證製程的完整性。
本文針對半導體產業中常見的苯及氫氟酸為主要的量測標的,利用光腔衰盪光譜分析儀(CRDS)量測氫氟酸,使用光離子化檢測器(PID)檢測苯等有機汙染物;研究發現PID及CRDS的靈敏度極高,因此能迅速掌握FOUP腔體內的汙染程度。且復歸時間短,感測器在十分鐘內即可歸零,相較以往的其他量測法,使用PID及CRDS能在相同的時間內完成更多的晶圓盒檢測。


The airborne molecular contamination (AMC) control has become an important issue since smaller and smaller integrated circuit (IC) linewidth is used in semiconductor products. During the process of wafer storage and transportation in front opening unified pods (FOUP), any AMC may pollute the wafer and decrease the defect-free rate. The AMC inside a FOUP might be reminder from the previous manufacturing process or the cross-contamination between wafers. Therefore, if the real-time AMC concentration inside a FOUP can be monitored to evaluate the cleanliness, the polluted FOUP can be discarded for loading wafer and prevent the decrease of defect-free rate.
Many AMC monitoring methodologies which were used in the past have their own limitations, including difficult real-time monitoring, poor sensitivity, poor accuracy, complex operation, often breakdown, and high maintenance cost. It is essential to make AMC monitoring fast and easy on the wafer storage and transportation in FOUPs. Automatic real-time monitoring and easy operation of sample collecting are examples but not limited to meet the demands of AMC monitoring on ppb or ppt level to assure the integrity of manufacturing process.
This research aims to measure hydrogen fluoride and toluene particles as main AMC in semiconductor manufacturing. The Cavity Ring-Down Spectroscopy (CRDS) was used for measuring hydrogen fluoride particles while the photoionization detector (PID) monitoring system was used for measuring toluene and related organic contaminant. The results showed that both CRDS and PID were highly sensitive and could measure the pollution index rapidly. In addition, the recovery time for the monitor was short that the indicator went back to zero within 10 minutes. Compared with other methods of measurements, CRDS and PID could finish more FOUPs monitoring within the same time period.


摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機及背景 4
1.3 文獻回顧 6
第二章 實驗設備與儀器 13
2.1 實驗設備 13
2.1.1 450 mm晶圓盒 13
2.2 監測儀器 14
2.2.1 光離子化檢測器 14
2.2.2 光腔盪光譜分析儀 17
第三章 實驗方法 19
3.1 實驗步驟 20
3.2 建立汙染濃度 23
3.3 監測晶圓盒內濃度 24
3.4 相對標準差 24
3.5 相對誤差 25
3.6 理想氣體方程式 25
3.7 晶圓盒門縫洩漏量 27
第四章 結果與討論 28
4.1 汙染濃度建立 28
4.2 濃度隨時間變化之曲線 30
4.3 偵測時間及相對標準差 32
4.4 實驗相對誤差 34
4.5 不同濃度下偵測時間之比較 36
第五章 結論與建議 37
5.1 CRDS並聯PID用於即時分析系統之量測效率 37
5.2 CRDS並聯PID用於即時分析系統之量測準確性 38
5.3 CRDS並聯PID用於即時分析系統之可行性 39
5.4 建議 40
第六章 參考文獻 41
附錄-審查意見回覆 42


1.Steve Rowley, “In AMC Monitoring, Simple Designs Go a Long Way.” Particle Measuring Systems, 2005, pp. 1-8.
2.A Muller, J.Psota-Kelthy, L. A. Krautter and J. D. Sinclair, “Volatile Cleanroom Concentration Source and Detection.” Solid State Technology, vol.37, no 9, 1994.
3.International Technology Roadmap for Semiconductors (ITRS), Yield Enhancement Tables, 2011.
4.T. Q. Nguyen, H. Fontaine, Y. Borde, V. Jacob, “Identification and quantification of FOUP molecular contaminants inducing defects in integrated circuits manufacturing.” Microelectronic Engineering, vol.105, 2013, pp. 124-129.
5.E.Crosson, K.Nishimura, Y.Sakaguchi, C.W.Rella, E.Wahal, “Real-time ultra-sensitive ambient ammonia monitor for advanced lithography.” Proc. of SPIE, vol. 6349, 2006, 11 pages.
6.J. Kames, A. Leibold, A. Nutsch, M. Otto, “Detection of Acidic Substances of H-X Type in Clean Room Air.” ECS Transactions, vol.25, no.3,2009, pp. 453-162.
7.J.G.Dojahn, W.E.Wentworth, S.N.Deming, S.Stearns, “Determination of percent composition of a mixture analyzed by gas chromatography Comparison of a helium pulsed-discharge photoionization detector with a flame ionization detector.” Journal of Chromatography A, vol.917, 2001, pp. 187-204.
8.康育豪,潔淨室凝結性有機汙染物之晶圓表面吸附沉積行為探討,博士論文,國立交通大學,新竹,2005。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top