跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 10:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳哲慶
研究生(外文):Che-Ching Wu
論文名稱:應用時域矩陣束法建構互連結構之尺寸化巨集模型
論文名稱(外文):Construction of Scalable Macro-models of Interconnects Using the Time-Domain Pencil of Matrix Method
指導教授:郭志文郭志文引用關係
指導教授(外文):Chih-Wen Kuo
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:78
中文關鍵詞:矩陣束法過孔結構互連結構巨集模型
外文關鍵詞:InterconnectsViaMacro ModelPencil Matrix Method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著系統級封裝(System In Package,SIP)或系統單晶片(System on chip,SOC)時脈速度快速的增加與互連結構佈局密度提高,在相鄰互連結構間的串音雜訊對於電路系統訊號完整度(Signal Integrity,SI)的影響也日益增加。全波模擬軟體如HFSS等經常被使用於傳輸系統的特性分析,但計算所需的時間較長,且對於主動電路的整合上較為困難。而電路模擬軟體如ADS因具有整合被動與主動元件的簡易性與較少的模擬時間等優點,是目前系統級高速電路設計最佳的工具。在現有文獻中通常以頻域的技術獲取尺寸化等效巨集模型,但是以時域的技
術來建構尺寸化等效巨集模型是一種比較直接、方便且低成本的方式。所以在考慮量測成本與實用性上,本論文發展一個系統化的方法應用時域的矩陣束法(method of Pencil Matrix)獲得高速互連耦合結構的尺寸化寬頻等效巨集模型(scalable broadband equivalent macro-model),使其能應用於現有電路模擬軟體中,以快速、準確的分析模擬系統級封裝。
As the circuit density and clock rate in SIP or SOC getting higher, the crosstalk interference between interconnects becomes more and more serious. This results in the degradation of signal integrity. Full wave simulation softwares such as HFSS are often used to analyze the characteristics of the transmission system, but the computation time is relatively long and it is difficult to integrate with active circuits. On the other hand, circuit simulation softwares such as ADS has the advantages of simplicity and needs less simulation time. The circuit simulation softwares is so far the best tool of designing high speed circuits. Usually obtain scalable equivalent macro-model in the existing literature with the technology of the frequency-domain, but using the technology of the time-domain to construct scalable equivalent
macro-model have more direct, convenient and low-cost. Therefore, considering cost and practicability, this thesis develops a systematic method using the method of Pencil Matrix in time domain to obtain the scalable broadband equivalent macro-model of the components of high-speed interconnect structures. The developed macro-models can be applied to existing simulation softwares for a fast and accurate
analysis of systems such as SIP.
目錄…………………………………………………………………………………………..Ⅰ
圖表索引……………………………………………………………………………………..Ⅲ
第一章 序論…………………………………………………………………………………1
1.1 研究目的與方法..……..…………………………………………………………….1
1.2 論文大綱..……………..…………………………………………………………….2
第二章 時域響應波形的模擬與量測………………………………………………………4
2.1 FDTD 演算法介紹...……………...………………………………………………….4
2.1.1 FDTD 公式推導...…..………………………………………………………….4
2.1.2 Courant 穩定準則...…………………………………………………………….7
2.1.3 吸收邊界………………………………………………………………………7
2.1.4 FDTD 模擬……...…..………………………………………………………….8
2.2 TDR理論……………………………………………………………………………..9
2.2.1 TDR/TDT 波形量測…………………………………………………………..10
2.2.2 訊號完整性(signal integrity)的重要性……………………………………….15
第三章 矩陣束法與多埠寬頻巨集模型…………………………………………………..18
3.1 矩陣束法(Pencil Matrix Method)…..……………………………………………...18
3.1.1 簡介…………………………………………………………………………..18
3.1.2 矩陣束法理論………………………………………………………………..19
3.2 等效寬頻集種元件模型…………..………………..……………………………...23
3.2.1 電抗理論……………...………………………..…………………………….23
3.2.2 電路等效模型…………………………………..……………………………23
3.2.3 寬頻集總元件模型……...………..……………………………………….…26
3.3 多埠寬頻巨集模型………………………………………………………………...29
3.3.1 雙埠寬頻巨集模型...………………………………………………………...29
3.3.2 三埠寬頻巨集模型…...……………………………………………………...31
3.3.3 多埠寬頻巨集模型…...……………………………………………………...36
第四章 尺寸化巨集模型…………………………………………………………………..38
4.1 迴歸分析理論……………………………………………………...........................38
4.2 尺寸化巨集模型的建構…………………………………………………………...41
4.2.1 傳輸線巨集模型……………………………………………………………..42
4.2.2 過孔結構巨集模型…………………………………………………………..48
4.2.3 混合結構巨集模型…………………………………………………………..53
4.2.4 差動過孔結構巨集模型……………………………………………………..56
第五章 結論………………………….…………………………………………………….65
參考文獻……………………………………………………………………………………..66
[1] R. R. Tummala, “SOP: what is it and why? A new microsystem-integration
technology paradigm-Moore''s law for system integration of miniaturized
convergent systems of the next decade,” IEEE Trans. Advanced Packaging, vol. 27,
pp. 241 –249, May 2004.
[2] R. R. Tummala, M. Swaminathan, M. M. Tentzeris, “The SOP for miniaturized,
mixed-signal computing, communication, and consumer systems of the next
decade,” IEEE Trans. Advanced Packaging, vol. 27, pp. 250-267, May 2004.
[3] M. Swaminathan, Kim Joungho, I. Novak, J. P. Libous, “Power distribution
networks for system-on-package: status and challenges,” IEEE Trans. Advanced
Packaging, vol. 27, pp. 286-300, May 2004.
[4] E. Laermans, J. De Geest, D. De Zutter,, F. Olyslager, S. Sercu and D. Morlion,
“Modeling differential via holes,” IEEE Trans. Advanced Packaging, vol. 24, pp.
357-363, Aug. 2001.
[5] G. Antonini, “SPICE equivalent circuits of frequency-domain responses,” IEEE
Trans. Electromagnetic Compatibility, vol. 45, pp. 502-512, Aug. 2003.
[6] H. Chen, Q. Li, L. Tsang, C. C. Huang, and J. Vikram, “Analysis of a large number
of vias and differential signaling in multilayered structures,” IEEE Trans.
Microwave Theory Tech., vol. 51, pp. 818-829, March. 2003.
[7] B. J. Cooke, J. L. Prince, and A. C. Cangellaris, “S-parameter analysis of
multiconductor integrated circuit interconnect systems,” IEEE Trans.
Computer-Aided Design, vol. 11, pp. 353-360, Mar. 1992.
[8] B. Young, “Wide-band 2N-port S-parameter extraction from N-port data,” IEEE
Trans. Microwave Theory Tech., vol. 46, pp. 1324 –1327, Sept. 1998.
[9] J. M. Jong, B. Janko, and V.K. Tripathi, “Time-domain characterization and circuit
modeling of a multilayer ceramic package,” IEEE Trans. Advanced Packaging, vol.
19, pp. 48 –56, Feb. 1996.
[10] W. T. Beyene, and J. Schutt-Aine, “Accurate frequency-domain modeling and
efficient circuit simulation of high-speed packaging interconnects,” IEEE Trans.
Microwave Theory Tech., vol. 45, pp. 1941 –1947, Oct. 1997.
[11] T. Mangold and P. Russer, “Full-wave modeling and automatic equivalent-circuit
generation of millimeter-wave planar and multilayer structures,” IEEE Trans.
Microwave Theory Tech., vol. 47, pp. 851-858, June 1999.
[12] S. Myunghee, R. Woonghwan, K. Hyungsoo, K. Jonghoon, and K. Joungho, “An
efficient crosstalk parameter extraction method for high-speed interconnection
lines,” IEEE Trans. Advanced Packaging, vol.23, pp. 148 –155, May 2000.
[13] A. Sutono, N. G. Cafaro, J. Laskar, and M. M. Tentzeris, “Experimental modeling,
repeatability investigation and optimization of microwave bond wire interconnects,”
IEEE Trans. Advanced Packaging, vol. 24, pp. 595 –603, Nov. 2001.
[14] K. Naishadharn, “Experimental equivalent-circuit modeling of SMD inductors for
printed circuit applications,” IEEE Trans. Electromagnetic Compatibility, vol. 43,
pp. 557 –565, Nov. 2001.
[15] K. L. Cho, N. Na and M. Swaminathan, “Characterization of embedded passives
using macromodels in LTCC technology,” IEEE Trans. Components, Packaging,
and Manufacturing Technology, Part B: Advanced Packaging, vol. 21, pp. 258 –268,
Aug. 1998.
[16] K. S. Yee, "Numerical solution of inital boundary value problems involving
maxwell''s equations in isotropic media," IEEE Trans. Antennas Propagat., vol.
14, pp. 302-307, May 1966.
[17] D. M. Sheen, S. M. Ali, M. D. Abouzahra, , and J.A. Kong, “Application of the
three-dimensional finite-difference time-domain method to the analysis of planar
microstrip circuits,” IEEE Trans. Microwave Theory and Techniques., vol. 38, pp.
849-857, July. 1990.
[18] J. P. Berenger, “Perfectly matched layer for the FDTD solution of wave-structure
interaction problems,” IEEE Trans. Antennas and Propagation, vol. 44, pp. 110-117,
Jan. 1996.
[19] Chen-Chao Wang, Chih-Wen Kuo, “A Time Domain Approach for Effective
Synthesizing of Broadband SPICE-Compatible Models of the Power Delivery
Networks with Resonance Effect”, Doctor Thesis of National Sun Yat-Sen
University, 2008.
[20] J. M. Jong and V. K. Tripathi, “Time domain characterization of interconnect
discontinuities in high speed circuits,” IEEE Trans. Comp., Hybrids, Manuf
Technol., vol. 14, pp. 497-504, Aug. 1992.
[21] Y. Hua and T. K. Sarkar, “Generalized pencil-of function method for extracting
poles of an EM System from its tansient response”, IEEE Trans. Antenna Propagat.,
vol. 37, no. 2, pp. 229 - 234, February 1989.
[22] T. K.Sarkar and O. Pereira, “Using matrix pencil method to estimate the
parameters of a sum of complex exponentials”, IEEE Antennas and Propagat.
Magazine, vol.37,no1, pp. 48 - 53. February 1995.
[23] Hsiao-Chen Chang, Tzong-Lin Wu, “Equivalent Circuit Extraction of Embedded
High-speed Interconnect by Combining FDTD method and Layer Peeling
Technique,” Master Thesis of National Sun Yat-Sen University, 2002.
[24] Jian-Sheng Shie, Tzong-Lin Wu, “Characterization and Equivalent Circuit
Modeling for Interconnection Structure from Time Domain Measurement,”, Master
Thesis of National Sun Yat-Sen University, 2000.
[25] D. H. Kwon, J. Kim, K. Kim, S. C. Choi, J. H. Lim, J. H. Park, L. Choi, S. W.
Hwang, and S. H. Lee, “Characterization and modeling of a new via structure in
multilayered printed circuit boards,” IEEE Trans. Components and Packaging
Technologies, vol. 26, pp. 483-489, June 2003.
[26] Chen-Chao Wang, Chih-Wen Ku, Chun-Chih Kuo, Tzong-Lin Wu, “A
Time-Domain Approach for Extracting Broadband Macro-π Models of Differential
Via Holes,” IEEE Transactions on Advanced Packaging, Vol. 29, No. 4, pp. 789 -
pp. 797, Nov. 2006.
[27] 張智星, MATLAB 程式設計, 清蔚科技與鈦思科技共同出版, 2005 年10 月
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top