|
[1] M. Kass, A. Witkin and D. Terzopoulos, “Snakes: Active contour models,” Internation Journal of Computer Vision, vol.1, pp. 321-331, 1988. [2] S. Bischoff, T. Weyand and L. Kobbelt, “Snakes on triangle meshes,” Bildverarbeitung fur die Medizin, pp. 208-212, 2005. [3] S. Bischoff and L. P. Kobbelt, “Parameterization-free active contour models,” The Visual Computer, vol.20, pp. 217-228, 2004. [4] K. Karsch and J. C. Hart, “Snaxels on a plane,” Non-Photorealistic Animation and Rendering, pp. 35-42, 2011. [5] E. L. Allgower and K. Georg, “Introduction to Numerical Continuation Methods,” Society for Industrial and Applied Mathematics, 1990. [6] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Levy, “Polygon Mesh Processing,” A K Peters, Ltd., 2010. [7] M. Meyer, M. Desbrun, P. Schroder, and A. H. Barr, “Discrete differential-geometry operators for triangulated 2-manifolds,” In Visualization and Mathematics III, pp. 35-58, 2003. [8] M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt, “OpenMesh - a generic and efficient polygon mesh data structure,” OpenSG Symposium, 2002. [9] Y. Lee and S. Lee, “Geometric snakes for triangular meshes,” Computer Graphics Forum, vol.21, pp. 229-238, 2002. [10] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or and H. P. Seidel, “Intelligent mesh scissoring using 3D snakes,” Pacific Conference on Computer Graphics and Applications, pp. 279-287, 2004. [11] Z. Ji, L. Liu, Z. Chen and G. Wang, “Easy mesh cutting,” Computer Graphics Forum, vol.25, pp. 283-291, 2006. [12] K. Lawonn, R. Gasteiger, C. Rossl and B. Preim, “Adaptive and robust curve smoothing on surface meshes,” Computers & Graphics, vol.40, pp. 22-35, 2014.
|