跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 14:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何羅伊
研究生(外文):Rois Ahmad Hanafi
論文名稱:類神經網路應用於台灣太陽能發電時前預測
論文名稱(外文):An-Hour-Ahead Solar Power Forecasting Using Artificial Neural Networks in Taiwan
指導教授:劉志文 博士
口試委員:吳元康盧展南張簡樂仁
口試日期:2019-01-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:72
中文關鍵詞:太陽能功率預測類神經網路反向傳播法極限學習機
DOI:10.6342/NTU201900185
相關次數:
  • 被引用被引用:1
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The development plan of the PV power plant in Taiwan with high penetration makes the grid operator has to prepare the strategies to mitigate its intermittency behaviour. The power grid must be more flexible to receive the fluctuated power from PV. One of the economical ways is to conduct a solar power forecasting.
The solar power forecasting is made using artificial neural networks in this thesis. The networks are trained using backpropagation and extreme learning machine. The extreme learning machine was used due to its advantages in accuracy and computational time over backpropagation neural networks. The persistence model is used as the reference for the performance index. It can also be the input of the combined forecasting model to improve accuracy.
Later on, the month-based segmentation forecasting was investigated to accommodate the seasonal variation of generated PV power output. At the end of the research, it is found out that the segmented solar power forecasting has a better performance than the forecasting with only one model for the whole year.
Abstract I
Contents II
List of Figures V
1. Introduction 1
1.1 World Solar PV Development 1
1.2 Solar Power in Taiwan 4
1.3 Solar PV Integration 7
1.4 Objectives of the Research 8
1.5 Problem Scope 9
1.6 Thesis Overviews 10
2. Literature Review 11
2.1 Solar power forecasting methods 11
2.2 Machine learning method for solar power forecasting 13
3. Methodology and Data Collection for Solar Power Forecasting 15
3.1 Artificial Neural Networks 15
3.2 Extreme Learning Machine 22
3.3 Performance Metrics 25
3.4 Benchmarking the Forecasting Model 27
3.5 Data Collection 29
3.5.1 PV Power Output 29
3.5.2 Weather conditions 29
4. Forecasting Results 31
4.1 Modeling and validation procedure 31
4.2 Data preprocessing 33
4.2.1 Feature selection 33
4.2.2 Day only solar power forecasting 37
4.2.3 Feature scaling 38
4.2.4 Data splitting 38
4.3 Persistence model 39
4.4 Backpropagation neural networks model 41
4.4.1 The number of hidden nodes 41
4.4.2 The input variation 42
4.4.3 BPNN forecasting result 43
4.5 Extreme learning machine model 52
4.6 Combined forecasting model 60
4.7 Segmented forecasting model 62
5. Conclusions and Future Works 68
5.1 Concluding remarks 68
5.2 Future works 69
References 70
[1]IRENA, Renewable capacity statistics 2018. 2018.
[2]IRENA, Renewable Power Generation Costs in 2017. 2018.
[3]M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovoltaics Res. Appl., vol. 26, no. 7, pp. 427–436, 2018.
[4]Fraunhofer ISE, “Photovoltaics Report,” 2018.
[5]Bureau of Energy MOEA Taiwan, “Energy Statistics 2017,” 2018.
[6]Taiwan Power Company, “Taiwan Power Company Sustainability Report,” 2018.
[7]J. Cochran et al., “Flexibility in 21 st Century Power Systems,” 2014.
[8]A. Tuohy et al., “Solar Forecasting: Methods, Challenges, and Performance,” IEEE Power Energy Mag., vol. 13, no. 6, pp. 50–59, 2015.
[9]T. Tian and I. Chernyakhovskiy, “Forecasting Wind and Solar Generation: Improving System Operations.” 2016.
[10]E. Isaksson and M. K. Conde, “Solar Power Forecasting with Machine Learning Techniques,” 2018.
[11]H.-T. Yang, C.-M. Huang, Y.-C. Huang, and Y.-S. Pai, “A Weather-Based Hybrid Method for 1-Day Ahead Hourly Forecasting of PV Power Output,” IEEE Trans. Sustain. Energy, vol. 5, no. 3, pp. 917–926, 2014.
[12]C. Wan, J. Zhao, Y. Song, Z. Xu, J. Lin, and Z. Hu, “Photovoltaic and solar power forecasting for smart grid energy management,” CSEE J. Power Energy Syst., vol. 1, no. 4, pp. 38–46, Dec. 2015.
[13]R. Perez, S. Kivalov, J. Schlemmer, K. Hemker, D. Renné, and T. E. Hoff, “Validation of short and medium term operational solar radiation forecasts in the US,” Sol. Energy, vol. 84, no. 12, pp. 2161–2172, 2010.
[14]R. Huang, T. Huang, R. Gadh, and N. Li, “Solar generation prediction using the ARMA model in a laboratory-level micro-grid,” 2012 IEEE 3rd Int. Conf. Smart Grid Commun. SmartGridComm 2012, pp. 528–533, 2012.
[15]G. Reikard, “Predicting solar radiation at high resolutions: A comparison of time series forecasts,” Sol. Energy, vol. 83, no. 3, pp. 342–349, 2009.
[16]A. Mellit, A. Massi Pavan, and V. Lughi, “Short-term forecasting of power production in a large-scale photovoltaic plant,” Sol. Energy, vol. 105, pp. 401–413, 2014.
[17]J. Zeng and W. Qiao, “Short-term solar power prediction using a support vector machine,” Renew. Energy, vol. 52, pp. 118–127, 2013.
[18]C. W. Chow et al., “Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed,” Sol. Energy, vol. 85, no. 11, pp. 2881–2893, 2011.
[19]A. Hammer, D. Heinemann, and B. Luckehe, “Short-term forecasting of solar radiation : a statistical approach using satellite data,” Sol. Energy, vol. 67, no. 1992, pp. 139–150, 2000.
[20]E. Lorenz, J. Hurka, D. Heinemann, and H. G. Beyer, “Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 2, no. 1, pp. 2–10, 2009.
[21]H. T. C. Pedro and C. F. M. Coimbra, “Assessment of forecasting techniques for solar power production with no exogenous inputs,” Sol. Energy, vol. 86, no. 7, pp. 2017–2028, 2012.
[22]G. Seif, “Selecting the best Machine Learning algorithm for your regression problem,” 2018, pp. 1–6, 2018.
[23]G.-B. Huang, Q.-Y. Zhu, and C. Siew, “Extreme learning machine : Theory and applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–501, 2006.
[24]B. Jing, Z. Qian, Y. Pei, and J. Wang, “Ultra short-term PV power forecasting based on ELM segmentation model,” J. Eng., vol. 2017, no. 13, pp. 2564–2568, 2017.
[25]C. Stergiou and D. Siganos, “Neural Networks.” [Online]. Available: https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html.
[26]M. A. Nielsen, Neural Networks and Deep Learning. Determination Press, 2015.
[27]International Energy Agency, “Photovoltaic and Solar Forecasting : State of the Art,” 2013.
[28]F. H. Jufri and J. Jung, “Photovoltaic Generation Forecasting Using Artificial Neural Networks Model with Input Variables and Model Parameters Selection Algorithm in Korea,” Int. J. Mach. Learn. Comput., vol. 7, no. 5, pp. 156–161, 2017.
[29]P. Bacher, H. Madsen, and H. A. Nielsen, “Online short-term solar power forecasting,” Sol. Energy, vol. 83, no. 10, pp. 1772–1783, 2009.
[30]F. Bizzarri, M. Bongiorno, A. Brambilla, and G. Gruosso, “Model of Photovoltaic Power Plants for Performance Analysis and Production Forecast,” vol. 4, no. 2, pp. 278–285, 2013.
[31]E. Lorenz, A. Hammer, D. Heinemann, and E. M. Group, “Local and regional PV power forecasting based on PV measurements, satellite data and numerical weather predictions,” 2016.
[32]J. Wang, R. Ran, and Y. Zhou, “A Short-Term Photovoltaic Power Prediction Model Based on an FOS-ELM Algorithm,” Appl. Sci., vol. 7, no. 4, p. 423, 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊