|
[1] G.J. Berg, M.K. McBride, C. Wang, C.N. Bowman, New directions in the chemistry of shape memory polymers, Polymer 55(23) (2014) 5849-5872. [2] A. Lendlein, S. Kelch, Shape‐memory polymers, Angew. Chem. Int. Ed. 41(12) (2002) 2034-2057. [3] H. Chen, Y. Li, Y. Liu, T. Gong, L. Wang, S. Zhou, Highly pH-sensitive polyurethane exhibiting shape memory and drug release, Polym. Chem. 5(17) (2014) 5168-5174. [4] D. Rickert, A. Lendlein, I. Peters, M.A. Moses, R.-P. Franke, Biocompatibility testing of novel multifunctional polymeric biomaterials for tissue engineering applications in head and neck surgery: an overview, European Archives of Oto-Rhino-Laryngology and Head & Neck 263(3) (2006) 215-222. [5] I. Ward Small, P. Singhal, T.S. Wilson, D.J. Maitland, Biomedical applications of thermally activated shape memory polymers, J. Mater. Chem. 20(17) (2010) 3356-3366. [6] M.J. Eisenberg, Drug-Eluting Stents, Circulation 114(16) (2006) 1745-1754. [7] A.D. Lantada, R. Del Valle-Fernández, P.L. Morgado, J. Muñoz-García, J.L.M. Sanz, J.M. Munoz-Guijosa, J.E. Otero, Development of personalized annuloplasty rings: combination of CT images and CAD-CAM tools, Ann. Biomed. Eng. 38(2) (2010) 280-290. [8] V. Thirumalai Arasu, D. Prabhu, M. Soniya, Stable silver nanoparticle synthesizing methods and its applications, J. Bio. Sci. Res 1 (2010) 259-270. [9] R. Salkar, P. Jeevanandam, S. Aruna, Y. Koltypin, A. Gedanken, The sonochemical preparation of amorphous silver nanoparticles, J. Mater. Chem. 9(6) (1999) 1333-1335. [10] S. Prabhu, E.K. Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, International Nano Letters 2(1) (2012) 32. [11] Y.-C. Yeh, B. Creran, V.M. Rotello, Gold nanoparticles: preparation, properties, and applications in bionanotechnology, Nanoscale 4(6) (2012) 1871-1880. [12] Y. Cheng, J.D. Meyers, A.-M. Broome, M.E. Kenney, J.P. Basilion, C. Burda, Deep penetration of a PDT drug into tumors by noncovalent drug-gold nanoparticle conjugates, J. Am. Chem. Soc. 133(8) (2011) 2583-2591. [13] D. Kim, Y.Y. Jeong, S. Jon, A drug-loaded aptamer− gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer, ACS Nano 4(7) (2010) 3689-3696. [14] B. Bonnemain, Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications a review, J. Drug Targeting 6(3) (1998) 167-174. [15] O. Olsvik, T. Popovic, E. Skjerve, K.S. Cudjoe, E. Hornes, J. Ugelstad, M. Uhlen, Magnetic separation techniques in diagnostic microbiology, Clin. Microbiol. Rev. 7(1) (1994) 43-54. [16] E.-L. Florin, V.T. Moy, H.E. Gaub, Adhesion forces between individual ligand-receptor pairs, Science-AAAS-Weekly Paper Edition-including Guide to Scientific Information 264(5157) (1994) 415-417. [17] J. Panyam, V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Adv. Drug Del. Rev. 55(3) (2003) 329-347. [18] O. Nielsen, M. Horsman, J. Overgaard, A future for hyperthermia in cancer treatment?, European journal of cancer (Oxford, England: 1990) 37(13) (2001) 1587. [19] S. Winoto‐Morbach, V. Tchikov, W. Mueller‐Ruchholtz, Magnetophoresis: I. Detection of magnetically labeled cells, J. Clin. Lab. Anal. 8(6) (1994) 400-406. [20] J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, M. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles, J. Biomed. Mater. Res. A. 80(2) (2007) 333-341. [21] Y. Zhang, N. Kohler, M. Zhang, Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials 23(7) (2002) 1553-1561. [22] G. Ciobanu, S. Ilisei, C. Luca, Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold, Mater. Sci. and Eng. C 35 (2014) 36-42. [23] C. Hess, A. Schwenke, P. Wagener, S. Franzka, C. Laszlo Sajti, M. Pflaum, B. Wiegmann, A. Haverich, S. Barcikowski, Dose‐dependent surface endothelialization and biocompatibility of polyurethane noble metal nanocomposites, J. Biomed. Mater. Res. A. 102(6) (2014) 1909-1920. [24] K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem. 58 (2007) 267-297. [25] Z. Xiao, Q. Wu, S. Luo, C. Zhang, J. Baur, R. Justice, T. Liu, Shape matters: a gold nanoparticle enabled shape memory polymer triggered by laser irradiation, Particle & Particle Systems Characterization 30(4) (2013) 338-345. [26] B. Das, M. Mandal, A. Upadhyay, P. Chattopadhyay, N. Karak, Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants, Biomed. Mater. 8(3) (2013) 035003. [27] S. Bose, M. Roy, A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds, Trends Biotechnol. 30(10) (2012) 546-554. [28] Y. Khan, M.J. Yaszemski, A.G. Mikos, C.T. Laurencin, Tissue engineering of bone: material and matrix considerations, JBJS 90(Supplement_1) (2008) 36-42. [29] H. Cao, N. Kuboyama, A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering, Bone 46(2) (2010) 386-395. [30] J. Rouwkema, N.C. Rivron, C.A. van Blitterswijk, Vascularization in tissue engineering, Trends Biotechnol. 26(8) (2008) 434-441. [31] H. Bramfeld, G. Sabra, V. Centis, P. Vermette, Scaffold vascularization: a challenge for three-dimensional tissue engineering, Curr. Med. Chem. 17(33) (2010) 3944-3967. [32] R.K. Jain, P. Au, J. Tam, D.G. Duda, D. Fukumura, Engineering vascularized tissue, Nat. Biotechnol. 23(7) (2005) 821-823. [33] P. Garcia, A. Pieruschka, M. Klein, A. Tami, T. Histing, J. Holstein, C. Scheuer, T. Pohlemann, M. Menger, Temporal and spatial vascularization patterns of unions and nonunions: role of vascular endothelial growth factor and bone morphogenetic proteins, The Journal of Bone & Joint Surgery 94(1) (2012) 49-58. [34] E. Wernike, M.-O. Montjovent, Y. Liu, D. Wismeijer, E.B. Hunziker, K.-A. Siebenrock, W. Hofstetter, F.M. Klenke, VEGF incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo, Eur. Cell. Mater. 19(3) (2010). [35] R. Li, D.J. Stewart, H.P. von Schroeder, E.S. Mackinnon, E.H. Schemitsch, Effect of cell‐based VEGF gene therapy on healing of a segmental bone defect, J. Orth. Res. 27(1) (2009) 8-14. [36] S. Tarafder, V.K. Balla, N.M. Davies, A. Bandyopadhyay, S. Bose, Microwave‐sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering, J. Tissue Eng. Regen. Med. 7(8) (2013) 631-641. [37] G.-H. Wu, S.-h. Hsu, polymeric-based 3D printing for tissue engineering, J. Med. Biol. Eng. 35(3) (2015) 285-292. [38] S.K.L. Levengood, S.J. Polak, M.J. Poellmann, D.J. Hoelzle, A.J. Maki, S.G. Clark, M.B. Wheeler, A.J.W. Johnson, The effect of BMP-2 on micro-and macroscale osteointegration of biphasic calcium phosphate scaffolds with multiscale porosity, Acta Biomater. 6(8) (2010) 3283-3291. [39] M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, D.R. Marshak, Multilineage potential of adult human mesenchymal stem cells, Science 284(5411) (1999) 143-147. [40] E.M. Horwitz, P.L. Gordon, W.K. Koo, J.C. Marx, M.D. Neel, R.Y. McNall, L. Muul, T. Hofmann, Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone, Proc. Natl. Acad. Sci. U.S.A. 99(13) (2002) 8932-8937. [41] Q. Wang, B. Chen, M. Cao, J. Sun, H. Wu, P. Zhao, J. Xing, Y. Yang, X. Zhang, M. Ji, Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs, Biomaterials 86 (2016) 11-20. [42] M. Goldberg, R. Langer, X. Jia, Nanostructured materials for applications in drug delivery and tissue engineering, J. Biomater. Sci. Polym. Ed. 18(3) (2007) 241-268. [43] A.J. Salgado, J.T. Oliveira, A.J. Pedro, R.L. Reis, Adult stem cells in bone and cartilage tissue engineering, Curr. Stem Cell Res. Ther. 1(3) (2006) 345-364. [44] A. Martins, A.R.C. Duarte, S. Faria, A.P. Marques, R.L. Reis, N.M. Neves, Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality, Biomaterials 31(22) (2010) 5875-5885. [45] R. Langer, J. Vacanti, Tissue engineering, Science 260(5110) (1993) 920-926. [46] S.A. Guelcher, Biodegradable polyurethanes: synthesis and applications in regenerative medicine, Tissue Engineering Part B: Reviews 14(1) (2008) 3-17. [47] J. Santerre, K. Woodhouse, G. Laroche, R. Labow, Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials, Biomaterials 26(35) (2005) 7457-7470. [48] W. Jie, L. Yubao, Tissue engineering scaffold material of nano-apatite crystals and polyamide composite, Eur. Polym. J. 40(3) (2004) 509-515. [49] W. Yang, S.K. Both, Y. Zuo, Z.T. Birgani, P. Habibovic, Y. Li, J.A. Jansen, F. Yang, Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering, J. Biomed. Mater. Res. A. 103(7) (2015) 2251-2259. [50] K.C. Hung, C.S. Tseng, S.h. Hsu, Synthesis and 3D Printing of Biodegradable Polyurethane Elastomer by a Water‐Based Process for Cartilage Tissue Engineering Applications, Adv. Healthc. Mater. 3(10) (2014) 1578-1587. [51] Y.-c. Chien, W.-T. Chuang, U.-S. Jeng, S.-h. Hsu, Preparation, Characterization, and Mechanism for Biodegradable and Biocompatible Polyurethane Shape Memory Elastomers, ACS Appl. Mater. Interfaces 9(6) (2017) 5419-5429. [52] D. Li, H. Sun, L. Jiang, K. Zhang, W. Liu, Y. Zhu, J. Fangteng, C. Shi, L. Zhao, H. Sun, Enhanced biocompatibility of PLGA nanofibers with gelatin/nano-hydroxyapatite bone biomimetics incorporation, ACS Appl. Mater. Interfaces 6(12) (2014) 9402-9410. [53] M. Yamamoto, A. Hokugo, Y. Takahashi, T. Nakano, M. Hiraoka, Y. Tabata, Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects, Biomaterials 56 (2015) 18-25. [54] R. Jin, B. Lin, D. Li, H. Ai, Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications, Curr. Opin. Pharm. 18 (2014) 18-27. [55] M.S. Kim, J.H. Kim, B.H. Min, H.J. Chun, D.K. Han, H.B. Lee, Polymeric scaffolds for regenerative medicine, Polym. Rev. 51(1) (2011) 23-52. [56] P. Bernadó, M. Blackledge, A self-consistent description of the conformational behavior of chemically denatured proteins from NMR and small angle scattering, Biophys. J. 97(10) (2009) 2839-2845. [57] N. Kawazoe, G. Chen, Gold nanoparticles with different charge and moiety induce differential cell response on mesenchymal stem cell osteogenesis, Biomaterials 54 (2015) 226-236. [58] C. Yi, D. Liu, C.-C. Fong, J. Zhang, M. Yang, Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway, Acs Nano 4(11) (2010) 6439-6448. [59] R. Zhang, P. Lee, V.C. Lui, Y. Chen, X. Liu, C.N. Lok, M. To, K.W. Yeung, K.K. Wong, Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model, Nanomed. Nanotechnol. Biol. Med. 11(8) (2015) 1949-1959. [60] J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J.-C. Bacri, F. Gazeau, Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia, J. Am. Chem. Soc 129(9) (2007) 2628-2635. [61] T. Takano, Y.-J. Li, A. Kukita, T. Yamaza, Y. Ayukawa, K. Moriyama, N. Uehara, H. Nomiyama, K. Koyano, T. Kukita, Mesenchymal stem cells markedly suppress inflammatory bone destruction in rats with adjuvant-induced arthritis, Lab. Invest. 94(3) (2014) 286. [62] Z.X. Khoo, J.E.M. Teoh, Y. Liu, C.K. Chua, S. Yang, J. An, K.F. Leong, W.Y. Yeong, 3D printing of smart materials: A review on recent progresses in 4D printing, Virtual Phys. Prototyp. 10(3) (2015) 103-122.
|