|
References [1] M. Brand and A. Hertzmann, \Style machines," in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp. 183{ 192, ACM Press/Addison-Wesley Publishing Co., 2000. [2] V. Pavlovic, J. M. Rehg, and J. MacCormick, \Learning switching linear models of human motion," in Advances in neural information processing systems, pp. 981{987, 2001. [3] G. W. Taylor, G. E. Hinton, and S. T. Roweis, \Modeling human motion using binary latent variables," in Advances in neural information processing systems, pp. 1345{1352, 2007. [4] K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik, \Recurrent network models for human dynamics," in Proceedings of the IEEE International Confer- ence on Computer Vision, pp. 4346{4354, 2015. [5] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, \Structural-rnn: Deep learning on spatio-temporal graphs," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5308{5317, 2016. [6] P. Ghosh, J. Song, E. Aksan, and O. Hilliges, \Learning human motion models for long-term predictions," in 2017 International Conference on 3D Vision (3DV), pp. 458{466, IEEE, 2017. [7] J. Martinez, M. J. Black, and J. Romero, \On human motion prediction using recurrent neural networks," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2891{2900, 2017. [8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, \Attention is all you need," in Advances in Neural Information Processing Systems, pp. 5998{6008, 2017. 60 [9] A. Gopalakrishnan, A. Mali, D. Kifer, L. Giles, and A. G. Ororbia, \A neural temporal model for human motion prediction," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12116{12125, 2019. [10] J. N. Kundu, M. Gor, and R. V. Babu, \Bihmp-gan: Bidirectional 3d human motion prediction gan," arXiv preprint arXiv:1812.02591, 2018. [11] J. Butepage, H. Kjellstrom, and D. Kragic, \Classify, predict, detect, anticipate and synthesize: Hierarchical recurrent latent variable models for human activity modeling," CoRR, vol. abs/1809.08875, 2018. [12] M. Wolter and A. Yao, \Gated complex recurrent neural networks," CoRR, vol. abs/1806.08267, 2018. [13] Y. T. Xu, Y. Li, and D. Meger, \Human motion prediction via pattern completion in latent representation space," arXiv preprint arXiv:1904.09039, 2019. [14] H. Wang and J. Feng, \Vred: A position-velocity recurrent encoder-decoder for human motion prediction," arXiv preprint arXiv:1906.06514, 2019. [15] H.-k. Chiu, E. Adeli, B. Wang, D.-A. Huang, and J. C. Niebles, \Actionagnostic human pose forecasting," in 2019 IEEE Winter Conference on Ap- plications of Computer Vision (WACV), pp. 1423{1432, IEEE, 2019. [16] Z. Liu, S. Wu, S. Jin, Q. Liu, S. Lu, R. Zimmermann, and L. Cheng, \Towards natural and accurate future motion prediction of humans and animals," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10004{10012, 2019. [17] Y. Li, Z. Wang, X. Yang, M. Wang, S. I. Poiana, E. Chaudhry, and J. Zhang, \Ecient convolutional hierarchical autoencoder for human motion prediction," The Visual Computer, vol. 35, no. 6-8, pp. 1143{1156, 2019. 61 [18] L.-Y. Gui, Y.-X. Wang, X. Liang, and J. M. Moura, \Adversarial geometryaware human motion prediction," in Proceedings of the European Conference on Computer Vision (ECCV), pp. 786{803, 2018. [19] D. Pavllo, C. Feichtenhofer, M. Auli, and D. Grangier, \Modeling human motion with quaternion-based neural networks," arXiv preprint arXiv:1901.07677, 2019. [20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, \Generative adversarial nets," in Advances in neural information processing systems, pp. 2672{2680, 2014. [21] E. Barsoum, J. Kender, and Z. Liu, \Hp-gan: Probabilistic 3d human motion prediction via gan," arXiv preprint arXiv:1711.09561, 2017. [22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, \Bert: Pre-training of deep bidirectional transformers for language understanding," arXiv preprint arXiv:1810.04805, 2018. [23] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and L. Kaiser, \Universal transformers," arXiv preprint arXiv:1807.03819, 2018. [24] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al., \Tensor ow: Large-scale machine learning on heterogeneous distributed systems," arXiv preprint arXiv:1603.04467, 2016. [25] A. Vaswani, S. Bengio, E. Brevdo, F. Chollet, A. N. Gomez, S. Gouws, L. Jones, L. Kaiser, N. Kalchbrenner, N. Parmar, R. Sepassi, N. Shazeer, and J. Uszkoreit, \Tensor2tensor for neural machine translation," CoRR, vol. abs/1803.07416, 2018. [26] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, \Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural envi- 62 ronments," IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 7, pp. 1325{1339, 2014. [27] J. Duchi, E. Hazan, and Y. Singer, \Adaptive subgradient methods for online learning and stochastic optimization," Journal of Machine Learning Re- search, vol. 12, no. Jul, pp. 2121{2159, 2011. [28] T. Tieleman and G. Hinton, \Lecture 6.5-rmsprop, coursera: Neural networks for machine learning," University of Toronto, Technical Report, 2012.
|