跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/20 18:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀冠宇
研究生(外文):Guan-Yu Ji
論文名稱:藉由網印擴散搭配雷射糙化技術改善網印式負型單晶矽太陽能電池之光電特性研究
論文名稱(外文):Improved Photovoltaic Characteristics of Screen-Printed N-type Monocrystalline Silicon Solar Cells by Screen-Printed Diffusion and Laser Texturization Techniques
指導教授:鄭錦隆
指導教授(外文):Chin-Lung Cheng
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:96
中文關鍵詞:網印擴散技術雷射糙化技術Nd : YAG雷射網印負型單晶矽太陽能電池
外文關鍵詞:Screen-Printed Diffusion TechniquesLaser Texturization TechniquesNd : YAG laserScreen-PrintedN-type Monocrystalline Silicon Solar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用Nd : YAG雷射,其波長為1064 nm,藉由調整雷射參數包含不同雷射功率、雷射圖形間距、雷射圖案、雷射頻率及雷射雕刻速度等雕刻出不同深淺之雷射溝槽。接著搭配氫氧化鉀(KOH)鹼蝕刻液糙化製作不同形狀之微米柱金字塔,降低負型單晶矽表面反射率,增加光行徑路徑。同時探討價格便宜之網印擴散技術,其擴散參數包含刮刀速度、乳膠厚度、網板與試片間距,再配合不同擴散時間、擴散氣體流量及擴散阻擋層等參數,提升網印式負型(N-type)單晶矽太陽能電池之光電特性。
實驗結果顯示,當雷射功率為10 %、雷射頻率為30 KHz、雷射間距為100 ?m和雷射雕刻速率為800 mm/min,表面反射率經由雷射雕刻及KOH糙化可降低5-10 %。當擴散時間為40-100分鐘和通入氣體流量為80 sccm,其射極(p+)片電組之片電阻值分佈於40-60 Ω/sq;當擴散時間為40分鐘、通入氣體流量為50 sccm以及不同阻擋層,其基極歐姆接觸(n+)片電阻之片電阻值分佈於12-14 Ω/sq。當射極(p+)片電阻為65 Ω/sq,銀電極共燒結溫度在870 ℃,共燒結時間為35秒時,可得到最佳光電轉換效率為12.20 %,其開路電壓為557 mV,短路電流密度為40.11 mA/cm2,填充因子為0.55。


In this study, the Nd : YAG laser with a wavelength of 1064 nm was used to form various texturing patterns. The laser parameters include the power, the spacing of the laser line, the pattern, the frequency, and the speed of the laser. After laser pattern, the potassium hydroxide (KOH) solution was used to demonstrate various micro-grooved pyramids. The low reflection of surface and the high path of optical can be enhanced by the micro-grooved pyramids. Then, the screen-printed diffusion technique (SPDT) was adopted for fabrication simply and at low-cost solar cell applications. The conditions of SPDT include the squeegee speed, the emulsion thickness, the snap-off setting, the diffusion time, the gas flow, and the diffusion barrier layer. The better photovoltaic characteristics of the screen-printed mono-crystalline silicon solar cells can be demonstrated for tuning parameter of SPDT.
Compared with the KOH texturing surface, the reflection of the surface with combined the laser and the KOH solution texturization can be reduced around 5-10 % at the laser power of 10 %, the frequency of 30 KHz, the line spacing of 100 ?m, and the speed of 800 mm/min. The sheet resistance of the emitter (p+) was obtained around 40-60 ohm/square at the diffusion time of 40-100 min, and nitrogen (N2) flow of 80 sccm. Furthermore, the sheet resistance of the base (n+) can be obtained around 12-14 ohm/square at the diffusion time of 40 min, nitrogen (N2) flow of 50 sccm, and different diffusion barrier layers. Finally, the screen-printed n-type mono-crystalline silicon solar cells with a conversion efficiency of 12.20 %, a open circuit voltage (Voc) of 557 mV, a short-circuit current density (Jsc) of 40.11 mA/cm2, and a fill factor (FF) of 0.55 can be demonstrated at the co-firing temperature of 870 ℃ for 35sec.


摘要...i
Abstract...ii
誌謝...iii
目錄...iv
表目錄...vi
圖目錄...vii
第一章 緒論...1
1.1 擴散技術於矽基太陽能電池之發展概況...1
1.2 雷射技術應用於矽基太陽能電池之發展概況...2
1.3 研究動機...3
1.4 論文架構...3
第二章 元件製程與特性量測...4
2.1 利用網印擴散技術改善網印式負型單晶矽太陽能電池之光電特性研究...4
2.1.1 RCA (Radio Corporation of America) clean...4
2.1.2 氫氧化鉀(KOH)與異丙醇(IPA)之混合化學溶液蝕刻糙化金字塔...5
2.1.3 網印硼膠...5
2.1.4 硼擴散形成射極(p+)...5
2.1.5 去除硼玻璃(BSG)...5
2.1.6 旋轉塗佈SiO2 (SOG)作為擴散阻擋層...5
2.1.7 網印磷膠...6
2.1.8 磷擴散形成基極(n+)...6
2.1.9 BOE蝕刻SOG及磷玻璃(PSG)...6
2.1.10 PECVD沉積Si3N4抗反射層...6
2.1.11 網印上下銀電極...7
2.1.12 高溫共燒結(Co-firing)網印電極...7
2.2 利用雷射糙化技術改善網印式負型單晶矽太陽能電池之光電特性研究...7
2.2.1 RCA (Radio Corporation of America) clean...7
2.2.2 雷射雕刻...8
2.2.3 氫氧化鉀(KOH)與異丙醇(IPA)之混合化學溶液蝕刻糙化金字塔...8
2.2.4 網印硼膠...8
2.2.5 硼擴散形成射極(p+)...8
2.2.6 去除硼玻璃(BSG)...8
2.2.7 旋轉塗佈SiO2 (SOG)作為擴散阻擋層...9
2.2.8 網印磷膠...9
2.2.9 磷擴散形成基極(n+)...9
2.2.10 BOE蝕刻SOG及磷玻璃(PSG)...9
2.2.11 PECVD沉積Si3N4抗反射層...9
2.2.12 網印上下銀電極...9
2.2.13 高溫共燒結(Co-firing)網印電極...10
2.3 電特性量測...10
2.3.1 四點探針(Four-point Probe)量測...10
2.3.2 太陽能電池轉換效率量測 10
2.3.3 外部量子效率(External Quantum Efficiency, EQE)量測...10
2.4 材料物性量測...11
2.4.1 掃描式電子顯微鏡(SEM)...11
2.4.2 薄膜測厚儀(n&k analyzer)...11
2.4.3 紫外光/可見光光譜儀(UV/VIS/NIR)...11
第三章 藉由網印擴散搭配雷射糙化技術改善網印式負型單晶矽太陽能電池之光電特性研究...33
3.1 利用網印擴散技術改善網印式負型單晶矽太陽能電池之光電特性研究...33
3.1.1 研究動機...33
3.1.2 結果與討論...33
3.1.3 結論...36
3.2 利用雷射糙化技術改善網印式負型單晶矽太陽能電池之光電特性研究...37
3.2.1 研究動機...37
3.2.2 結果與討論...37
3.2.3 結論...39
第四章 總結與建議...87
4.1 總結...87
4.2 建議...87
參考文獻...88
Extended Abstract...91
簡歷...94

[1] U.Gangopadhyay, S. Roy, S.Garain, S. Jana and S.Das, “Comparative simulation study between n- type and p- type Silicon Solar Cells and the variation of efficiency of n- type Solar Cell by the application of passivation layer with different thickness using AFORS HET and PC1D”, IOSR Journal of Engineering, Vol. 2, No. 8, (2012) pp. 41-48.
[2] J. E. Cotter, J. H. Guo, P. J. Cousins, M. D. Abbott, F. W. Chen and K. C. Fisher, “P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells”, IEEE Tran. Electron Devices, Vol. 53, No. 8, (2006) pp.1893-1901
[3] C. Gong, K. V. Nieuwenhuysen, N. E. Posthuma, E. V. Kerschaver and J. Poortmans, “Another approach to form p+ emitter for rear junction n-type solar cells: Above 17.0% efficiency cells with CVD boron-doped epitaxial emitter”, Solar Energy Materials & Solar Cells, Vol. 95, No. 1, (2011) pp. 11-13
[4] Y. Komatsu, V. D. Mihailetchi, L. J. Geerligs, B. V. Dijk, J. B. Rem and M. Harris, “Homogeneous p+ emitter diffused using boron tribromide for record 16.4% screen-printed large area n-type mc-Si solar cell”, Solar Energy Materials & Solar Cells, Vol. 93, No. 6, (2009) pp. 750-752
[5] S. Singh, F. Dross , N. E. Posthuma and R. Mertens, “Large area 15.8% n-type mc-Si screen-printed solar cell with screen printed Al-alloyed emitter”, Solar Energy Materials & Solar Cells, Vol. 95, No. 4, (2011) pp. 1151-1156
[6] F. Recart, I. Freire, L. Perez, R. L. Aurrekoetxea, J. C. Jimeno and G. Bueno, “Screen printed boron emitters for solar cells”, Solar Energy Materials & Solar Cells, Vol. 91, No. 10, (2007) pp. 897-902
[7] A. Uzum, A. Hamdi, S. Nagashima, S. Suzuki, H. Suzuki, S. Yoshiba, M. Dhamrin, K. Kamisako, H. Sato, K. Katsuma and K. Kato, “Selective emitter formation process using single screen-printed phosphorus diffusion source”, Solar Energy Materials & Solar Cells, Vol. 109, (2013) pp. 288-293
[8] H. Haverkamp, A. D. Shirazi, B. Raabe, F. Book and G. Hahn, “Minimizing the electrical losses on the front side: Development of a selective emitter process from a single diffusion”, Photovoltaic Specialists Conference, 2008. PVSC ''08. 33rd IEEE, (2008) pp. 1-4
[9] D. L. Meier and D. K. Schroder, “Contact Resistance: Its Measurement and Relative Importance to Power Loss in a Solar Cell”, IEEE Tran. Electron Devices, Vol. ED-31, No. 5, (1984) pp. 647-653
[10] T. Y. Kwon, D. H. Yang, M. K. Ju, W. W. Jung, S. Y. Kim, T. W. Lee, D. Y. Gong and J. Yi, “Screen printed phosphorus diffusion for low-cost and simplified industrial mono-crystalline silicon solar cells”, Solar Energy Materials & Solar Cells, Vol. 95, No. 1, (2011) pp. 14-17
[11] A. M. Vilches, C. Voz, M. Colina, G. Lopez, I. Martin , A. Orpella, J. Puigdollers, M. Garcia and R. Alcubilla, “Progress in Silicon Heterojunction Solar Cell fabrication with rear laser-fired contacts”, Electron Devices (CDE), 2013 Spanish Conference on, (2013) pp. 345-348
[12] Y. Zhou, B. Wu, S. Tao, A. Forsman and Y. Gao, “Physical mechanism of silicon ablation with long nanosecond laser pulses at 1064 nm through time-resolved observation”, Applied Surface Science, Vol. 257, No. 7, (2011) pp. 2886-2890
[13] G. Poulain , C. Boulord, D. Blanc, A. Kaminski, M. Gauthier, C. Dubois, B. Semmache and M. Lemiti, “Direct laser printing for high efficiency silicon solar cells fabrication”, Applied Surface Science, Vol. 257, No. 12, (2011) pp. 5241-5244
[14] S. W. Glunz, R. Preu and D. Biro, “Chapter 1.16: Crystalline Silicon Solar Cells-State-of-the-Art and Future Developments”, Fraunhofer Institute for Solar Engergy Systems, pp. 29-33
[15] D. Y. Lee, H. H. Lee, J. Y. Ahn, H. J. Park, J. H. Kim, H. J. Kwon and J. W. Jeong, “A new back surface passivation stack for thin crystalline silicon solar cells with screen-printed back contacts”, Solar Energy Materials & Solar Cells, Vol. 95, No. 1, (2011) pp. 26-29
[16] E. Urrejola, R. Petres, J. G. Reichenbach, K. Peter, E. Wefringhaus, H. Plagwitz and G. Schubert, “High Efficiency Industrial PERC Solar Cells with all PECVD-Based Rear Surface Passivation”, WIP Renewable Energies, (2011) pp. 2233-2236
[17] T. Boscke, R. Hellriegel, T. Wutherich, L. Bornschein, A. Helbig, R. Carl, M. Dupke , D. Stichtenoth, T. Aichele, R. Jesswein, T. Roth, C. Schollhorn, T. Geppert, A. Grohe, J. Lossen and H.-J. Krokoszinski, “Fully Screen-Printed PERC Cells With Laser-Fired Contacts - An Industrial Cell Concept With 19.5 Efficiency”, Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, (2011) pp. 003663-003666
[18] Y. G. Xiao, Y. J. Zhou, M. Lestrade, Z.Q. Li and Z. M. S. Li, “Simulation on Crystalline Silicon Solar Cell with Laser-fired Contact (LFC)”, Computational Electronics, (2009) pp. 1-4
[19] R. R. King, R. A. Sinton and R. M. Swanson, “Studies of Diffused Phosphorus Emitters: Saturation Current, Surface Recombination Velocity, and Quantum Efficiency”, IEEE Tran. Electron Devices, Vol. 37, No. 2, (1990) pp. 365-371
[20] J. Nijs, E. Demesmaeker, J. Szlufcik, J. Poortmans, L. Frisson , K. De Clercq, M. Ghannam, R. Mertens and R. V. Overstraeten, “Latest Efficiency Results with the Screenprinting Technology and Comparison with the Buried Contact Structure”, Photovoltaic Energy Conversion, Vol. 2, (1994) pp.1242-1249
[21] E. Lee, H. Lee, J. Choi, D. Oh, J. Shim, K. Cho, J. Kim, S. Lee, B. Hallam, S. R. Wenham and H. Lee, “Improved LDSE processing for the avoidance of overplating yielding 19.2% efficiency on commercial grade crystalline Si solar cell”, Solar Energy Materials & Solar Cells, Vol. 95, No. 12, (2011) pp. 3592-3595
[22] P. J. Verlinden, R. M. Swanson, R. A. Sinton, R. A. Crane, C. Tilford, J. Perkins and K. Garrison, “High-efficiency, point-contact silicon solar cells for Fresnel lens concentrator modules”, Photovoltaic Specialists Conference, (1993) pp. 58-64
[23] H. Haverkamp, M. J. McCann and K. Peter, “A Process Design for the Production of IBC Solar Cells on Multi-Crystalline Silicon”, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference, Vol. 2, (2006) pp. 1365-1367
[24] J. M. Gee, W. K. Schubert and P. A. Basore, “EMITTER WRAP-THROUGH SOLAR CELL”, Photovoltaic Specialists Conference, (1993) pp. 265-270


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top