跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 01:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林聖凱
研究生(外文):LIN, SHENG-KAI
論文名稱:具自調曲面之低流量氣壓軸承研發與在口型滑軌的應用
論文名稱(外文):Development of Low-Flux Pneumatic Bearing with Self-Adjusting Surface and Its Application to Hollow Rectangular Aerostatic Guideway
指導教授:羅斯維
指導教授(外文):LO, SY-WEI
口試委員:黃順發林恆勝
口試委員(外文):HUANG, SHUN-FALIN, HENG-SHENG
口試日期:2018-07-30
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:128
中文關鍵詞:氣浮滑軌矩形軸承高分子剛性流量振動
外文關鍵詞:Aerostatic guidewayRectangular bearingPolymerRigidityAir flowVibration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本論文目的是使用高分子材料與環狀支撐來構成軸承主體並做成氣靜壓滑軌,環狀支撐可以提升軸承之剛性和負載力,高分子軸承體在氣壓下會形成內凹曲面,搭配其表面所披覆的金屬薄殼,可保持空氣高壓以提高負載力。薄膜不但提供均勻良好的表面粗糙度及平整度,一但氣膜瓦解時也可以保護高分子體表面,將以上優點應用於口形氣浮滑座,使其有更好的靜/動態特性。
實驗分為靜態與動態。靜態實驗將本體更改為高分子材料搭配環狀支撐後與披覆/不披覆金屬薄殼探討滑軌之負載能力、流量及剛性等特性;動態實驗進行動態特性的量測,探討本文更改設計後之口形氣浮滑座在不同負荷下是否具有受到振動時吸收振動的不穩定現象。
本實驗在供壓0.5 MPa (5bar) 的情況下,靜態實驗結果顯示本體更改為高分子材料搭配環狀支撐後與披覆金屬薄殼在比原始滑座更低 (約30%) 的空氣流量下,有更好的負載能力(增加18%)與平均剛性(增加24%);動態實驗結果顯示,動態實驗結果顯示本體更改為高分子材料後搭配金屬薄殼與毛細管最大加速度為0.069 m/s^2,原始滑座最大加速度為0.116 m/s^2,顯示出本體更改為環狀支撐結構型式高分子體搭配金屬薄殼在振動狀況下其穩定性是較原始氣浮滑座來的好。






關鍵字:氣浮滑軌、矩形軸承、高分子、剛性、流量、振動

The objective of this thesis was to use polymer material and an annular support to form the bearing body for constructing an aerostatic guideway, where the annular support could improve the rigidity and load force of the bearing and such bearing body of polymer material would form a concave surface under air pressure. With the attachment of a metal membrane on the surface, the air pressure could be maintained to increase the load force. The membrane not only provided a uniform surface roughness and flatness, but also protected the surface of the polymer body when the air film was collapsed. The above advantages were applied in the hollow rectangular aerostatic guideway to provide a better static and dynamic properties.
The experiment involved a “static” discussion and a “dynamic” measurement. In the static experiment, when the bearing body of the guideway was switched to polymer material with annular support, its load capacity, aerodynamics and rigidity, either with or without a metal membrane, would be discussed; And, for the dynamic experiment, its performances were measured to investigate any instability in absorption of vibration when the re-designed hollow rectangular aerostatic guideway was placed under different loads.
Under pressure of 0.5 MPa (5 bar), in the static experiment, results showed that the body exhibited better load capacity (an increase of 18%) and average rigidity (an increase of 24%) when it was changed to polymer material with an annular support and metal membrane at a lower air flow (approximately 30%) than the original guideway. In the dynamic experiment, results showed that the change to polymer material and annular support with a metal membrane could achieve the maximum capillary acceleration of 0.069 m/s^2, in contrast with the maximum acceleration of the guideway at 0.116 m/s^2, indicating better stability of polymer body of annular support and metal membrane than the original guideway.
Keywords: Aerostatic guideway; Rectangular bearing; Polymer; Rigidity; Air flow; Vibration

目錄
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1前言 1
1.2文獻回顧 1
1.3研究動機 8
1.4論文架構 9
第二章 氣體軸承與氣浮滑軌簡介 10
2.1氣體軸承原理及分類 10
2.2氣體軸承的特色 11
2.3氣體軸承之不穩定現象 13
2.4氣靜壓滑軌簡介 15
2.5節流器之工作原理 17
2.6節流器形式與種類 19
2.7節流器曲線之特性 22
第三章 高分子氣靜壓滑座設計與架構 24
3.1 原始口形氣浮滑軌 24
3.2 氣靜壓氣浮滑座改良設計 26
3.3 供氣、量測系統與靜∕動態特性實驗設備 34
第四章 各種結構與材質之氣浮滑座靜態實驗結果 45
4.1 靜態特性實驗整體架構 45
4.2 氣浮滑座浮動高度值量測方式 46
4.3 靜態特性實驗流程 47
4.4 靜態特性實驗結果 47
第五章 各種結構與材質之氣浮滑座動態實驗結果 53
5.1 動態特性實驗整體架構 53
5.2 氣浮滑座振動頻率量測方式 54
5.3 動態特性實驗流程 55
5.4 動態特性實驗結果 55
第六章 結論與建議 96
6.1 靜態特性實驗結論 96
6.2 動態特性實驗結論 97
6.3 建議 101
參考文獻 102
附錄 109

參考文獻
[1]Wills, R., “On the Pressure Produced on a Flat Plate When Opposed to a Stream of Air Issuing from an Orifice in a Plane Surface” , Trans. Cambridge Philos. Vol.3, pp. 121-140.
[2]Hirn, G., “Sur les principauxphénomènes qui presentment les frottementesmédiats” , Soc. Ind. Mulhouse Bull, Vol.26, pp. 188-277, 1854.
[3]Reynolds, O., “On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil” , Philosophical Trans. R. Soc. London, Vol. 177, pp.157-234,1886.
[4]Kingsbery, A., “Experiments with an Air Lubricated Journal”, Journal of the American Society for Naval Engineers. Vol.9, pp.267-292, 1894.
[5]Harrison, W.J., “The hydrodynamical theory of lubrication with special ref air as lubricant” , Trans Cambridge Philos. Soc., 1913.
[6]Gross, W.A., “Gas Film Lubrication” , New York.
[7]Constantinescu, V.N., “Gas Lubrication, American Society of MechanicalEngineers” , New York.
[8]Grassam, N.S. and Powell, J.W., “Gas Lubrication Bearings” , LondonButterworths.
[9]Lund, J.W., “A Theoretical Analysis of Whirl Instability and Pneumatic Hammer for a Rigid Rotor in Pressurized Gas Journal Bearings” , J.Lubr. Technol., Vol.89.p.154-166, 1967.
[10]Powell, J.W., “Design of Aerostatic Bearing” , Machinery Publishing Co.Ltd., 1970.
[11]Kazimierski, Z., “Investigation of Externally Pressurized Gas Bearings with Different Feeding System” , Journal of Lubrication Technology., Vol.102, p.59-64, 1980.
[12]十合晉一著,賴耿陽譯著,“氣體軸承-從設計到製造”,復漢出版社,1985。
[13]王本灼,“空氣靜壓軸承的剛性反饋”,杭州機械,第2期,1989。
[14]Wang, J. , “Design of Gas Bearing Systems for Precision Applications” , P.H.D. Eindhoven University of Technology, 1993.
[15]董世文,“氣靜壓軸承之穩定性能研究”,長庚大學,碩士論文,2000。
[16]龔倍弘,“體軸承剛性及阻尼特性之實驗探討”,長庚大學,碩士論文,2001。
[17]Zhang, Q. and Shan, X.C. and Guo, G. and Wong, S., “Performance analysis of air bearing in a micro system” , Materials Science and Engineering., Vol.423, pp.225–229, 2005.
[18]陸芷琪,“氣靜壓軸承之特性分析及最佳化”,中原大學,碩士論文,2006
[19]Li, Y. and Ding, H., “Influences of the geometrical parameters of aerostatic thrust bearing with pocketed orifice-type restrictor on its performance” , Tribology International ., Vol.40, p.1120-1126, 2007.
[20]Ron A.J. van Ostayen, Anton van Beek, Rob H. Munnig-Schmidt., “Design and optimization of an active aerostatic thrust bearing” , ASPE annual conference, 2007.
[21]Aguirre, G., Al-Bender, F., Van Brussel, H. “Dynamic stiffness compensation with active aerostatic thrust bearings” , 2008.
[22]莊家榮,超精密氣靜壓導軌系統研發與測試,國立彰化師範大學機電工程學系碩士論文,2009。
[23]陳奕琪,“氣靜壓軸承節流器之設計與分析”,國立交通大學,碩士論文,2010。
[24]Raimondi, A.A., and Boyd, J., “An Analysis of Orifice and Capillary Compensated Hydrostatic Journal Bearing” , Journal of the American Society of Lubrication Engineering, Vol.13, pp.29-37, 1957.
[25]Licht, L. and Elrod, E. A., “A Study of the Stability of Externally PressurizedGas Bearings” , Trans. ASME, Vol. 80, June, p.250-258, 1958.
[26]Pal, D.K. and Majundar, B.C., “Stability Analysis of Extermally-Pressurized Gas-Lubricated Porous Bearings with Journal Rotation” ,Tribology Int.,Vol.17,Aprial,p.83-98,1984.
[27]黃儒詣,“多孔空氣節流器之設計與特性之實驗探討”,國立雲林科技大學,碩士論文,2012。
[28]謝豐仰,“結合薄膜與泡棉之新型氣靜壓軸承用節流器”,國立雲林科技大學,碩士論文,2013。
[29]盧聖涵,“組合金屬與高分子體之氣靜壓止推軸承的靜態特性研究”,國立雲林科技大學,碩士論文,2014。
[30]黃振華,“高分子體披覆金屬薄膜之氣靜壓止推軸承其靜/動態特性實驗探討”,國立雲林科技大學,碩士論文,2015。
[31]余其衡,“幾何與材料設計參數對金屬及高分子體氣靜壓止推軸承靜態特性之影響”,國立雲林科技大學,碩士論文,2015。
[32]陳俊焜,PCB 鑽孔機氣靜壓平台分析與實驗研究,彰化師範大學工業教育學系碩士論文,2001。
[33]蘇雅玲,氣靜壓軸承式氣壓缸及定位平台設計與控制之研究,國立成功大學,碩士論文,2005。
[34]林雨夔,氣靜壓平面軸承之參數最佳化設計分析,國立成功大學機械工程學系碩士論文,2009。
[35]王柏智,多孔質氣靜壓軸承之性能模擬與實驗研究,國立臺灣科技大學機械工程系碩士論文,2014。
[36]Mohsin, M.E., “The Use of Controlled Restrictors for Compensating Hydrostatic Bearing” , Third International Conference on Machine Tool Design Research, p.129-424, 1963.
[37]Mayer, J.E. and Shaw, M.C., “Characteristics of Extermally Pressurized Bearing Having Variable External Flow Restrictors” , ASEM Journal of Basic Engineering, Vol.85, p.291,1963.
[38]Davies P. B., “A general analysis of multi-recess hydrostatic journal bearings” , Proceedings of Institution of Mechanical Engineering, Part1, Vol.184, No.43, p.827-836, 1969.
[39]O’Donoghue J. P. and Rowe W.B., “Hydrostatic bearing design” , Tribology International, Vol.2, No.1, p.25-71, 1969.
[40]Rowe W. B. and O’Donoghue J. P., “Diaphragm valves for controlling opposed pad bearing” , Proceeding of the Mechanical Engineering Tribology Convention, Brighton, p.1-9, 1970.
[41]Rowe W.B. and Stout K. J., “Externally pressurized bearings-design for manufacture Part3: design of liquid externally pressurized bearings for manufacture including tolerancing procedures” , Trobology International, Vol.7, No.5, p.195-212, 1974.
[42]Brown G. M., “Dynamics characteristic of hydrostatic thrust bearing” , Machine Tool Design Research, Vol.1-2, No.1, p.157, 1961.
[43]DeGast J. G. P., “A new type of controlled restrictor(M.D.R.) for double film hydrostatic bearings and its application to high-precision machine tools” ,Advance in Machine Tools Design and Research, p.273-298, 1966.
[44]Mohsin M. E. and Morsi S. A., “The dynamic stiffness of controlled hydrostatic bearings” , ASME Journal of Tribology, Vol.91, No.4, p.597-608, 1969.
[45]Morsi S. A., “Passively and active controlled externally pressurized oil-film bearings” , Transations of the ASME , Vol.94, No.1, p.56-63, 1971.
[46]Leonard R. and Rowe W.B., “Dynamic force coefficients the mechanism of instability in the hydrostatic journal bearings” , Wear, Vol.23, No.3, p.277-282, 1973.
[47]Cusano C., “Characteristics of externally pressurized journal bearing with membrane-type variable-flow restroctors as compensating elements” , Inst Mechanical Engineering, Vol.188, No.52, p.52-74, 1974.
[48]Rohde S. M. and Ezzat H.A., “On the dynamic behavior of hybrid journal bearings” , Journal of Lubrication Technology, Transactions of the ASME, Vol.98, No.1, p.90-94, 1976.
[49]Ghosh M. K. and Viswanath N.S., “Recess volume fluid compressibility effect on the dynamic characteristics of multirecess hydrostatic journal bearings with journal rotation” , Journal of Tribology, Transactions of the ASME, Vol.109, No.3, p.417-426, 1987.
[50]Ghosh M. K. and Viswanath N.S., “Frequency dependent stiffness and damping coefficients of orifice compensated multi-recess hydrostatic journal bearings” , International Journal of Machine Tools & Manufacturing, Vol.27, No.3, p.275-287, 1987.
[51]Ghosh M. K., Guha S. K. and Majumdar B.C., “Rotordynamic coefficients of multirecess hybrid journal bearings partⅠ” , Wear, Vol.129, No.2, p.245-259, 1989.
[52]Ghosh M. K., Guha S. K. and Majumdar B.C., “Rotordynamic coefficients of multirecess hybrid journal bearings partⅡ” ,Wear, Vol.129, No.2, p.261-272, 1989.
[53]Mishra A., “Analysis if pneumatic instability of an aerostatic rectangular thrust
bearing with offset load” , Wear, Vol.122, p.1-12, 1988.
[54]Cheng K. and Rowe W. B., “A selection strategy for the design of externally pressurized journal bearings” , Tribology International, Vol.28, No.7, p.465-474, 1995.
[55]Singh N. and Sharma S. C., “Performance of membrane compensated multirecess hydrostatic/hybrid flexible journal bearing system considering various recess shapes” , Tribology International, Vol.37, No.1, p.11-24, 2004.
[56]Miyatake M, Yoshimoto S., “Numerical investigation of static and dynamic characteristics of aerostatic thrust bearings with small feed holes” , Tribology International, Vol.43, 2010.
[57]Bhat N, Barrans S, Narasimhan R, Kumar S, Chuin LT., “Static and dynamic analysis of inherently compensated aerostatic flat pad bearings” , Proceedings of the ASME international mechanical engineering congress and exposition, 2010.
[58]Bhat N, Kumar S, Tan W, Narasimhan R, Chuin LT., “Performance of inherently compensated flat pad aerostatic bearings subject to dynamic perturbation forces” , Proceedings of the ASME international mechanical engineering congress and exposition, Vol.36, p.399-407, 2012.
[59]Telingater, V. S., “Hydrostatic Slideways Using Standard Bearings” , Machines and Tooling, Vol. 43, No. 2, pp. 15-20, 1972.
[60]Yakir, E. M., “Regulators for Open Hydrostatic Slideways” , Machines and Tooling, Vol. 124, No. 8, 1973.
[61]Bushuyev, V. V., “Angular Stiffness of Hydrostatic Slides” , Machines and Tooling, Vol. 124, No. 10, 1973.
[62]孟心齋,毛細管節流開式液體靜壓導軌油膜厚度-載荷特性的分析與改善特性的措施,洛陽農機學院學報第1期,1981。
[63]孟昭焱,孟心齋與陳樹謙,開式液體靜壓導軌靜態特性與最佳參數,洛陽工學院學院學報,第21卷,p.43-47,第4期,2000。
[64]顏安慶,方形氣體軸承與口形氣浮導軌特性分析,國立雲林科技大學機械工程系碩士論文,2000。
[65]黃啟華,虛擬口形氣浮導軌之精密線性滑動平台特性分析,國立雲林科技大學機械工程系碩士論文,2001。
[66]劉福田,矩形氣體軸承在氣靜壓導軌之應用設計,國立彰化師範大學工業教育學系碩士論文,2001。
[67]林育廷,氣靜壓導軌系統之分析與實驗研究,國立彰化師範大學機械工程學系碩士論文,2002。
[68]黃衍翰,最佳化氣靜壓平面軸承之性能測試與節能之研究,國立成功大學機械工程學系碩士論文,2011。
[69]黃皓煜,應用於口形氣浮滑軌之低流量高分子/金屬薄膜式矩形軸承,國立雲林科技大學機械工程學系碩士論文,2017。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊