跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/05 09:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宗佑
研究生(外文):Tsai, Tsung-Yu
論文名稱:公共自行車之替代性與互補性—以臺北都會區為例
論文名稱(外文):The substitution and complementarity of bike-sharing system in Taipei city.
指導教授:蕭傑諭蕭傑諭引用關係
指導教授(外文):Hsiao, Chieh-Yu
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立交通大學
系所名稱:運輸與物流管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:78
中文關鍵詞:公共自行車巢式羅吉特選擇行為
外文關鍵詞:Bike-sharing systemNested logitChoice behavior
相關次數:
  • 被引用被引用:5
  • 點閱點閱:748
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:1
近年來公共自行車蓬勃發展,越來越多國家重視其發展,而公共自行車發展的主要目的為替公共運輸提供最後一哩的服務,增加公共運輸的可及性,希望可透過此方式增加對公共運輸的使用率。公共自行車與公共運輸或私人運具的關係是值得去探討的,過去文獻多半探討公共自行車作為主要運具時是否可以取代私人運具,但較少討論公共自行車與公共運輸的互補關係,此外在不同旅次目的下,公共自行車與其他運具之互補或替代性也可能會有所差異,因此本研究將通勤與休閒旅次分開進行討論,探討在不同旅次目的下,公共自行車與其他運具間的互補及替代性。
本研究透過問卷的發放來了解台北都會區民眾對於運具選擇的偏好,問卷的設計採用敘述性偏好,並使用多項羅吉特模式與巢式羅吉特模式進行校估,參考過去文獻所使用之變數,進而分析民眾對於運具選擇的偏好。本研究發現通勤旅次下,民眾較不容易在主運具間做轉換,較容易在接駁方式做轉換;休閒旅次下,民眾較容易在主運具間轉換,較不容易在接駁方式中作轉換。模式校估的結果顯示影響民眾運具選擇的因素包括總金額、總時間、降雨及溫度,而個人的社經特性也會影響對於運具的選擇,如性別、年齡與所得。
透過交叉彈性的計算,在通勤時公共自行車與公車及捷運在價格或時間的互補性皆大於替代性,表示存在著較高的互補關係。在休閒時公共自行車與捷運在價格或時間上的互補性大於替代性,但公共自行車與公車無論在價格或時間上僅存在替代性。在政策模擬方面,假設在小雨的情況下提供公共運輸的票價優惠,能增加公共自行車或公共運輸的市占率。在無降雨的情況下,平日提供公車轉乘優惠,假日提供捷運轉乘優惠對於公共運輸市占率提升較有幫助。提供青少年使用公共自行車的優惠,在通勤旅次下可增加公共自行車作為公共運輸接駁的市占率,在休閒旅次下則會增加公共自行車作為主要運具的市占率。
In recent years, more and more countries paid attention to the development of bike-sharing system. The main purpose of bike-sharing system is to provide the last mile service for public transportation and to increase the accessibility of public transportation. The relationship between bike-sharing system, public transport and private vehicle mode is worth exploring. Previous literatures mostly explored whether bike-sharing system could replace private vehicle mode, but less focus on the complementary relationship between bike-sharing and public transportation. Maybe there are different relationship between commute and leisure. This study is explored the complementary and substitution relationship of different purpose of trips.
The questionnaire in this study is conducted by stated preference in order to discover the mode choice of Taipei residents, and using data to modeling the multinomial logit and nested logit model. The results revealed that total cost, total time, rain, temperature, gender, age and income have apparently effect on mode choice. Otherwise, people care about the main mode in commute trips and care about the access mode in leisure trips.
Through the calculation of cross- elasticity, there are complementary relationship between bike-sharing system and public transportation in commute trips. In leisure trips, there are complementary relationship between bike-sharing system and metro, substitution relationship between bike-sharing system and bus. The results of policy simulations revealed that if there are metro price discount when raining help to gain the market share of public transportation. If there are bus price discount on weekdays or metro price discount on holidays when it raining help to gain the market share of bike-sharing system. Offer price discount for young people to use bike-sharing system, in commute trips may gain the market share of bike-sharing system as acess mode of public transportation , in leisure trips may gain the market share of bike-sharing system as main mode.
目錄 i
表目錄 iii
圖目錄 iv
第一章、緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究範圍 3
1.4 研究內容與流程 4
第二章、文獻回顧 6
2.1 公共自行車系統介紹 6
2.1.1 公共自行車系統之演進 6
2.1.2 公共自行車系統之比較 8
2.1.3 台北市公共自行車 9
2.2 公共自行車選擇因素 11
2.3 運具間替代與互補性之衡量 14
2.4 公共自行車之替代與互補性 14
2.5 小結 17
第三章、資料蒐集與研究方法 18
3.1 敘述性偏好方法 18
3.2 個體選擇行為理論 18
3.2.1 多項羅吉特模式(Multinomial Logit, MNL) 19
3.2.2 巢式羅吉特模式(Nested Logit, NL ) 20
第四章、資料蒐集分析 23
4.1 問卷內容設計 23
4.1.1 運具選擇習慣調查 23
4.1.2 運具選擇偏好 24
4.1.3 個人基本資料 31
4.2 調查方法與過程 32
4.3 基本統計分析 32
第五章、模式建構與解釋 34
5.1 模式指定(Model Specification) 34
5.2 多項羅吉特模式校估結果 38
5.2.1 通勤旅次多項羅吉特模式 38
5.2.2 休閒旅次多項羅吉特模式 43
5.3 巢式羅吉特模式校估結果 49
5.3.1 巢式羅吉特架構 49
5.3.2 通勤旅次巢式羅吉特模式 50
5.3.3 休閒旅次巢式羅吉特模式 53
5.4 彈性分析 57
5.4.1 價格彈性 57
5.4.2 時間彈性 59
5.5 政策分析 60
5.5.1 降雨價格優惠政策 60
5.5.2 公共運輸轉乘公共自行車價格優惠政策 65
5.5.3 青少年價格優惠政策 67
第六章、結論與建議 69
6.1 結論 69
6.2 建議 71
參考文獻 72
1. Bachand-Marleau, J., Lee, B., & El-Geneidy, A. (2012). Better understanding of factors influencing likelihood of using shared bicycle systems and frequency of use. Transportation Research Record: Journal of the Transportation Research Board, (2314), 66-71.
2. Ben-Akiva, M. E., & Lerman, S. R. (1985). Discrete choice analysis: theory and application to travel demand (Vol. 9). MIT press.
3. Campbell, A. A., Cherry, C. R., Ryerson, M. S., & Yang, X. (2016). Factors influencing the choice of shared bicycles and shared electric bikes in Beijing. Transportation research part C: emerging technologies, 67, 399-414.
4. Chen, S. Y. (2016). Green helpfulness or fun? Influences of green perceived value on the green loyalty of users and non-users of public bikes. Transport Policy, 47, 149-159.
5. Clewlow, R. R. (2016). Carsharing and sustainable travel behavior: Results from the San Francisco Bay Area. Transport Policy, 51, 158-164.
6. de Chardon, C. M., Caruso, G., & Thomas, I. (2016). Bike-share rebalancing strategies, patterns, and purpose. Journal of transport geography, 55, 22-39.
7. Efthymiou, D., Antoniou, C., & Waddell, P. (2013). Factors affecting the adoption of vehicle sharing systems by young drivers. Transport policy, 29, 64-73.
8. Faghih-Imani, A., Eluru, N., El-Geneidy, A. M., Rabbat, M., & Haq, U. (2014). How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal. Journal of Transport Geography, 41, 306-314.
9. Faghih-Imani, A., & Eluru, N. (2015). Analysing bicycle-sharing system user destination choice preferences: Chicago’s Divvy system. Journal of transport geography, 44, 53-64.
10. Faghih-Imani, A., & Eluru, N. (2016). Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system. Journal of Transport Geography, 54, 218-227.
11. Fishman, E., Washington, S., & Haworth, N. (2014). Bike share’s impact on car use: evidence from the United States, Great Britain, and Australia. Transportation Research Part D: Transport and Environment, 31, 13-20.
12. Fishman, E., Washington, S., Haworth, N., & Watson, A. (2015). Factors influencing bike share membership: An analysis of Melbourne and Brisbane. Transportation research part A: policy and practice, 71, 17-30.
13. Fishman, E. (2016). Bikeshare: A review of recent literature. Transport Reviews, 36(1), 92-113.
14. Fuller, D., Gauvin, L., Kestens, Y., Morency, P., & Drouin, L. (2013). The potential modal shift and health benefits of implementing a public bicycle share program in Montreal, Canada. International journal of behavioral nutrition and physical activity, 10(1), 66.
15. García-Palomares, J. C., Gutiérrez, J., & Latorre, M. (2012). Optimizing the location of stations in bike-sharing programs: a GIS approach. Applied Geography, 35(1), 235-246.
16. Kaplan, S., Manca, F., Nielsen, T. A. S., & Prato, C. G. (2015). Intentions to use bike-sharing for holiday cycling: An application of the Theory of Planned Behavior. Tourism Management, 47, 34-46.
17. Krygsman, S., Arentze, T., & Timmermans, H. (2007). Capturing tour mode and activity choice interdependencies: A co-evolutionary logit modelling approach. Transportation Research Part A: Policy and Practice, 41(10), 913-933.
18. Li, W., & Kamargianni, M. (2017). How May Air Pollution Affect Bike-Sharing Choice? A Mode Choice Behavior Study in a Developing Country with Policy Implications (No. 17-01089).
19. López-Valpuesta, L., & Sánchez-Braza, A. (2016). Going a long way? On your bike! Comparing the distances for which public bicycle sharing system and private bicycles are used. Applied Geography, 71, 95-105.
20. Ma, T., Liu, C., & Erdoğan, S. (2015). Bicycle sharing and public transit: does Capital Bikeshare affect Metrorail ridership in Washington, DC?. Transportation Research Record: Journal of the Transportation Research Board, (2534), 1-9.
21. Martin, E., & Shaheen, S. (2011). The impact of carsharing on public transit and non-motorized travel: an exploration of North American carsharing survey data. Energies, 4(11), 2094-2114.
22. Mátrai, T., & Tóth, J. (2016). Comparative assessment of public bike sharing systems. Transportation Research Procedia, 14, 2344-2351.
23. McFadden, D. (1978). Modeling the choice of residential location. Transportation Research Record, (673).
24. O’brien, O., Cheshire, J., & Batty, M. (2014). Mining bicycle sharing data for generating insights into sustainable transport systems. Journal of Transport Geography, 34, 262-273.
25. Shaheen, S., Guzman, S., & Zhang, H. (2010). Bikesharing in Europe, the Americas, and Asia: past, present, and future. Transportation Research Record: Journal of the Transportation Research Board, (2143), 159-167.
26. Train, K. E. (2009). Discrete choice methods with simulation. Cambridge university press.
27. Verma, M., Rahul, T. M., Reddy, P. V., & Verma, A. (2016). The factors influencing bicycling in the Bangalore city. Transportation Research Part A: Policy and Practice, 89, 29-40.
28. Wang, J., Tsai, C. H., & Lin, P. C. (2016). Applying spatial-temporal analysis and retail location theory to public bikes site selection in Taipei. Transportation Research Part A: Policy and Practice, 94, 45-61.
29. Wen, C. H., & Koppelman, F. S. (2001). The generalized nested logit model. Transportation Research Part B: Methodological, 35(7), 627-641.
30. Zhang, L. Sustaining Bike-Sharing Systems in China: Case Studies-Lihong Zhang, Jun Zhang, Zhengyu Duan, David Bryde. Sustainable Governance–Setting Direction and Inspiring Change in a City Development Corporation-Stefan, 251.
31. Zhao, J., Deng, W., & Song, Y. (2014). Ridership and effectiveness of bikesharing: The effects of urban features and system characteristics on daily use and turnover rate of public bikes in China. Transport Policy, 35, 253-264.
32. Zhu, W., Pang, Y., Wang, D., & Timmermans, H. (2013). Travel behavior change after the introduction of public bicycle systems: Case study in Minhang District, Shanghai. In Transportation Research Board 92nd Annual Meeting (No. 13-0764).
33. Zoepf, S. M., & Keith, D. R. (2016). User decision-making and technology choices in the US carsharing market. Transport Policy, 51, 150-157.
34. 王乃翎(2016),公共自行車費率對捷運乘客轉乘使用之影響,國立交通大學交通運輸研究所碩士論文。
35. 余書玫(2009),公共自行車租借系統選擇行為之研究,國立交通大學交通運輸研究所碩士論文。
36. 凌瑞賢,個體旅運需求模式,2015。
37. 解鴻年、張馨文,新竹科學城民眾使用公共自行車意願分析,Journal of architecture and planning, vol.12 No.3, Pages237-263, 2011.
38. Meddin, R & DeMaio, P, The Bike-sharing Worldmap.(https://www.google.com/maps/d/viewer?ll=-3.81666561775622e-14%2C-42.890624&spn=143.80149%2C154.6875&hl=en&msa=0&z=1&source=embed&ie=UTF8&om=1&mid=1UxYw9YrwT_R3SGsktJU3D-2GpMU),2017年4月30日下載。
39. DeMaio, P, “The Bike-sharing Blog” (http://bike-sharing.blogspot.tw/2015/01/the-bike-sharing-world-2014-year-end.html),2017年4月30日下載。
40. 台北市政府民政局,106年1月各行政區戶籍人口數、戶數統計表,http://ca.gov.taipei/ct.asp?xItem=107080960&ctNode=41896&mp=102001,2017年6月12日下載。
41. YouBike官方網站,2017年5月租賃次數統計,http://taipei.youbike.com.tw/cht/f212.php?nid=5ce56b1bd58183cc0da76496c56ff59a&rows=20&page=1,2017年6月2日下載。
42. 中華民國交通部,105年民眾日常使用運具狀況調查摘要分析,http://www.motc.gov.tw/ch/home.jsp?id=54&parentpath=0,6,2017年8月7日下載。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top