跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 23:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊志豪
研究生(外文):Chih-Hao Yang
論文名稱:碳足跡納入綠建築專案評估決策模式:建築產能擴充及綠色技術外包觀點探討
論文名稱(外文):Incorporating Carbon footprint into Green building project decision model: Perspectives from construction capacity expansions and green technology outsourcing
指導教授:蔡文賢蔡文賢引用關係
指導教授(外文):Wen-Hsien Tsai
學位類別:博士
校院名稱:國立中央大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:49
中文關鍵詞:綠建築作業基礎成本制碳足跡數學規劃
外文關鍵詞:Green buildingActivity-based costingCarbon footprintMathematical Programming
相關次數:
  • 被引用被引用:1
  • 點閱點閱:535
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
全球關注氣候變遷與綠色企業社會責任的風潮,建築產業興起了綠色建築的需求。綠建築建造過程中,儘管採用低碳材料或技術仍然會產生能源和水消耗和汙染排放,在碳排放限制環境下,碳足跡亦成為適合且有效益的評估工具。碳稅政策的執行對於碳基礎能源來源造成額外成本,也使外部環境成本內部化。為成功發展綠色競爭力和增進公司利潤,現今建築產業注重正確評估相關綠建築建造成本,為滿足綠建築市場需求,產能擴充和綠色技術外包已成為縮短工期和獲得市場份額的有利方式。本研究目的為發展「作業基礎成本制-綠建築決策模式」之數學規劃方法並納入碳稅成本,進一步以產能擴充及綠色技術外包觀點選擇綠建築優化組合專案。
本研究主要貢獻乃提供學術、產業和政策制定者新方法評選綠建築專案納入碳足跡的概念。
(1)學術面:本研究主要藉由提供創新作業研究的方式於建築成本管理,並將碳足跡(碳稅政策)納入作業基礎成本數學規劃混和模式。
(2)產業面:建築專案經理可以透過適合的成本動因,正確了解綠建築節能作業成本的資源分配方式。
(3)政策面: 建築產業碳稅政策下,本研究發展綠建築優化評選之成本評估方式,政策制定者必須了解不同碳稅利率對於不同產業的可能影響。

Global concerns over climate change and green corporate society responsibility have sparked the need for green buildings in the construction industry. During the construction process, energy and water consumption, as well as pollution emissions result in spite of adopting low-carbon material or relevant technology. The consideration of carbon footprint as an evaluation tool should be suitable and benefit the carbon-regulated environment. The implementation of carbon tax policy imposes an additional cost to carbon-based energy sources and promotes the legislation of internalization of external environmental cost. The construction industry now focuses on accurately evaluating related green building construction costs in order to successfully develop their green core competencies. In order to satisfy the needs of the green building market, capacity expansions and technology outsourcing may be a good way to shorten the construction period and obtain market share. The purpose of this paper is to develop an ABC green building decision model incorporating carbon tax costs by using a mathematical programming approach, in order to select an optimal green building projects portfolio from the perspectives of both capacity expansion and green technology outsourcing.
This paper is of benefit to industry, academics and policy makers by providing a new way to integrating carbon footprint into green building project strategy selection. (1) For the academic field, this study contributes to the innovation operation research (OR) literature, especially concerning the incorporation of the carbon footprint assessment measurement into construction cost management, by utilizing an ABC mathematical planning decision model for green building projects. (2)For the construction field, the integrated model can help construction company managers to more accurately understand how to allocate resources and funding for energy saving activities to each green building, through appropriate cost drivers. (3) For the policy field, this study has developed an optimal green building project cost assessment solution regarding the carbon tax policy for the construction industry. Policy makers should be aware of the possible effects of the carbon tax rate on different industries.
English Abstract ………………………………………………………………… i
Chinese Abstract ………………………………………………………………… ii
Acknowledgments ………………………………………………………………… iii
Table of Contents ………………………………………………………………… iv
List of Figures ………………………………………………………………… v
List of Tables ………………………………………………………………… vi
Chapter 1 Introduction…………………………………………………… 1
Chapter 2 Research Background………………………………………… 5
2.1 Green building carbon footprint integrated with a carbon tax policy…………………………………………………………… 5
2.2 Green building cost assessment view of activity-based costing (ABC)………………………………………………………… 8
Chapter 3 ABC Decision Model formulation for Green building………… 11
3.1 Construction capacity expansions for green building projects… 11
3.1.1 Stepwise unit-level activity cost-direct machine cost………… 11
3.1.2 Piecewise unit-level activity cost-direct labour cost…………… 13
3.1.3 Piecewise price elasticity -direct material cost………………… 15
3.2 Green technology outsourcing for green building projects…… 18
3.3 Carbon tax costs for green building project…………………… 19
3.4 A mathematical programming model………………………… 22
Chapter 4 A numerical example and discussions………………………… 28
4.1 Step 1: calculation carbon footprint of green building system boundaries……………………………………………………… 28
4.2 Step 2: identification of selected green building project construction-related cost element and numerical data………… 30
4.3 Step 3: The optimal green building projects decision with capacity expansions…………………………………………… 34
4.4 Step 4: The optimal green building projects decision with green technology outsourcing………………………………………… 34
Chapter 5 Conclusions and policy implication…………………………… 38
References ………………………………………………………………… 40

[1] Antunes, CarlosHenggeler, & Martins, AntónioGomes. (2003). OR models for energy policy, planning and management. Annals of Operations Research, 120/121, 15-17.
[2] Chan, Edwin H. W., Qian, Queena K., & Lam, Patrick T. I. (2009). The market for green building in developed Asian cities—the perspectives of building designers. Energy Policy, 37(8), 3061-3070.
[3] Conefrey, Thomas, Fitz Gerald, John D., Valeri, Laura Malaguzzi, & Tol, Richard S. J. (2012). The impact of a carbon tax on economic growth and carbon dioxide emissions in Ireland. Journal of Environmental Planning and Management, 56(7), 934-952.
[4] Cooper, R., & Kaplan, R.S. . (1988). How cost accounting distorts product costs. . Management Accounting 69(10), 20-27.
[5] Diakaki, Christina, Grigoroudis, Evangelos, & Kolokotsa, Dionyssia. (2013). Performance study of a multi-objective mathematical programming modelling approach for energy decision-making in buildings. Energy(59),534-542.
[6] EEA. (1996). Environmental taxes, implementation and environmental effectiveness. Copenhagen.
[7] IPCC. (2006). IPCC Guidelines for National Greenhouse Gas Inventories 2006.
[8] IPCC. (2007). IPCC, Climate Change. Working group III: mitigation of climate change. IPCC Fourth Assessment Report 2007; 2007, http://www.ipcc.ch/publications and data/ publications and data reports.
[9] Jaillon, L., Poon, C. S., & Chiang, Y. H. (2009). Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong. Waste Management, 29(1), 309-320.
[10] Johansson, Bengt. (2006). Climate policy instruments and industry—effects and potential responses in the Swedish context. Energy Policy, 34(15), 2344-2360.
[11] Kee, Robert. (2008). The sufficiency of product and variable costs for production-related decisions when economies of scope are present. International Journal of Production Economics, 114(2), 682-696.
[12] Kua, Harn Wei, & Wong, Chee Long. (2012). Analysing the life cycle greenhouse gas emission and energy consumption of a multi-storied commercial building in Singapore from an extended system boundary perspective. Energy and Buildings, 51, 6-14.
[13] Kubba, Sam. (2010) Green Construction Project Management and Cost Oversight.Boston: Architectural Press.
[14] Kyrö, Riikka, Heinonen, Jukka, Säynäjoki, Antti, & Junnila, Seppo. (2011). Occupants have little influence on the overall energy consumption in district heated apartment buildings. Energy and Buildings, 43(12), 3484-3490.
[15] Lin, Boqiang, & Li, Xuehui. (2011). The effect of carbon tax on per capita CO2 emissions. Energy Policy, 39(9), 5137-5146.
[16] Lu, Chuanyi, Tong, Qing, & Liu, Xuemei. (2010). The impacts of carbon tax and complementary policies on Chinese economy. Energy Policy, 38(11), 7278-7285.
[17] Lu, Yujie, Zhu, Xinyuan, & Cui, Qingbin. (2012). Effectiveness and equity implications of carbon policies in the United States construction industry. Building and Environment, 49, 259-269.
[18] Mamouni Limnios, Elena Alexandra, Ghadouani, Anas, Schilizzi, Steven G. M., & Mazzarol, Tim. (2009). Giving the consumer the choice: A methodology for Product Ecological Footprint calculation. Ecological Economics, 68(10), 2525-2534.
[19] Mavrotas, George, Diakoulaki, Danae, Florios, Kostas, & Georgiou, Paraskevas. (2008). A mathematical programming framework for energy planning in services’ sector buildings under uncertainty in load demand: The case of a hospital in Athens. Energy Policy, 36(7), 2415-2429.
[20] Mehleri, Eugenia D., Sarimveis, Haralambos, Markatos, Nikolaos C., & Papageorgiou, Lazaros G. (2012). A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level. Energy, 44(1), 96-104.
[21] Omu, Akomeno, Choudhary, Ruchi, & Boies, Adam. (2013). Distributed energy resource system optimisation using mixed integer linear programming. Energy Policy, 61, 249-266.
[22] Panagiotidou, Maria, & Fuller, Robert J. (2013). Progress in ZEBs—A review of definitions, policies and construction activity. Energy Policy(62),196-206.
[23] Pandey, Divya, Agrawal, Madhoolika, & Pandey, JaiShanker. (2011). Carbon footprint: current methods of estimation. Environmental Monitoring and Assessment, 178(1-4), 135-160.
[24] Privitera, Giovanni, Day, Antony R., Dhesi, Gurjeet, & Long, David. (2011). Optimising the installation costs of renewable energy technologies in buildings: A Linear Programming approach. Energy and Buildings, 43(4), 838-843.
[25] Schmidt, Mario. (2009). Carbon accounting and carbon footprint - more than just diced results? International Journal of Climate Change Strategies and Management, 1(1), 19 - 30.
[26] Tsai, Wen-Hsien. (1996). A technical note on using work sampling to estimate the effort on activities under activity-based costing. International Journal of Production Economics, 43(1), 11-16.
[27] Tsai, Wen-Hsien, Chen, Hui-Chiao, Leu, Jun-Der, Chang, Yao-Chung, & Lin, Thomas W. (2013). A product-mix decision model using green manufacturing technologies under activity-based costing. Journal of Cleaner Production, 57, 178-187.
[28] Tsai, Wen-Hsien, & Hung, Shih-Jieh. (2009). Treatment and recycling system optimisation with activity-based costing in WEEE reverse logistics management: an environmental supply chain perspective. International Journal of Production Research, 47(19), 5391-5420.
[29] Tsai, Wen-Hsien, Lee, Kuen-Chang, Liu, Jau-Yang, Lin, Hsiu-Ling, Chou, Yu-Wei, & Lin, Sin-Jin. (2012). A mixed activity-based costing decision model for green airline fleet planning under the constraints of the European Union Emissions Trading Scheme. Energy, 39(1), 218-226.
[30] Vetterli, Jan, & Benz, Michael. (2012). Cost-optimal design of an ice-storage cooling system using mixed-integer linear programming techniques under various electricity tariff schemes. Energy and Buildings, 49, 226-234.
[31] Wiedmann, T. , & Minx, J. ( 2008). A definition of carbon footprint. Ecological Economics Research Trends (Carolyn C. Pertsova ed., pp. 1-11). NY: Nova Science.
[32] Williams, H.P. (2013). Model Building in Mathematical Programming: Wiley.
[33] Zhao, Jing, Wu, Yong, & Zhu, Neng. (2009). Check and evaluation system on heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of china based on multi-index comprehensive evaluation method. Energy Policy, 37(6), 2124-2130.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊