跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾才鳴
研究生(外文):Tsai-Ming Tseng
論文名稱:傾斜式方管循環流體化床之吸附除溼應用
論文名稱(外文):Improved Circulating Square-tube Inclined Fluidized Beds for Dehumidification Systems
指導教授:陳希立陳希立引用關係
指導教授(外文):Sih-Li Chen
口試委員:張至中江沅晉李文興
口試日期:2018-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:74
中文關鍵詞:傾斜式循環流體化床吸附除溼矽膠方管擋板
DOI:10.6342/NTU201902543
相關次數:
  • 被引用被引用:1
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為設計一傾斜循環流體化床系統來進行空調除溼作業,其利用顆粒重力、顆粒通道與流體化床特性即可連續操作。
首先,本研究探討改良之圓管、方管流體化床系統在不同操作條件下之除濕性能表現。實驗結果顯示,使用矽膠顆粒作為吸附材料,隨著外氣相對濕度增加、再生溫度增加,系統之總吸附量亦提高;此外,在高再生溫度下(50℃),圓管床體系統與方管床體系統的除溼性能表現,差距率在2.6%以內,差異不大;然而在低再生溫度時(25℃),圓管床體有較佳的吸附表現,與方管床體的結果差距率可高達53%,此因相較於方管床體,圓管床體的構造有更高顆粒交換率的潛力。
最後,本研究探討於圓管、方管床體內部放置楔形擋風板,對系統除溼性能之影響,並找出各自最佳顆粒填充量。實驗結果顯示,由於擋版強化顆粒之垂直旋轉運動、並活化沉積在最底部不動之顆粒,使得系統的材料單位重總吸附量明顯提升。本研究之圓管床體4號擋板(底部厚度4.7 cm、高度13 cm)在單床床體顆粒填量495 g下有最佳之除濕結果,材料單位重總吸附量高達0.512 kg/hr-kg,其平均淹沒高度約占通管出口截面長度之60%;方管床體的部分,4號擋板(底部厚度4.15 cm、高度13 cm)在單床顆粒408 g下有最佳除濕性能表現——0.534 kg/hr-kg,其平均淹沒高度約占通管出口截面長度之45%。
The purpose of this study is to design an inclined circulating fluidized bed that maintains a proper humid indoor environment and be energy-efficient. With gravity, the design of particle channels and the characteristics of the fluidized bed, the system can adsorb water vapor continuously and steadily.
This study first experimentally investigates the performance of the fluidized bed, both circular and square tube, under different operating air conditions. The results indicates that the adsorption capacity is increased with the raising relatvie humidity of the outside air and the raising regeneration temperature. Besides, under the condition of high regeneration temperature(50℃), there is little difference between the adsorption capacity of a circular tube and that of a square tube. Nevertheless, under low regeneration temperature(25℃), the adsorption performance of curcular tube is higher than that of the square tube. It’s because, compared to a square tube, the shape of a circular tube inherently increases the exchange rate of particles between the beds.
This study also experimentally investigates the influence of a wedged-shape air baffle on the performance of the system, and then finds out the weight of particles with the highest adsorption rate. The results indicates that the total adsorption amount per hour per weight of particles increases with the baffle placement. The number 4 baffle of the circular beds (bottom thickness 4.7 cm, height 13 cm) with the weight of particles 495 g per bed has the highest total adsorption amount per hour per weight of particles, 0.512 kg/hr-kg. In this experiment, as the lower edge of the exit of the particle channels represents the baseline, the submerging height (the average height of the inclined particle plane in beds) is around 60% of the length between the lower edge and the higher edge of the exit of the particle channels. As for the square-tube beds, the number 4 baffle (bottom thickness 4.15 cm, height 13 cm) with 408 g weight of particles gives the highest adsorption result, 0.534 kg/hr-kg. Its submerging height is around 45% of the length between the lower/higher edges of the exit of the particle channels.
致謝 I
摘要 II
ABSTRACT III
目錄 V
圖目錄 VII
表目錄 X
符號說明 XI
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 固定填充床(fixed packed bed) 4
1.2.2 流體化床(fluidized bed) 5
1.2.3 傾斜流體化床(inclined fluidized bed) 12
1.3 研究動機與目的 20
第2章 基礎理論 23
2.1 吸附原理 23
2.2 吸附材料 27
2.3 壓損與流體化速度之數學模型 28
2.4 除濕系統之性能計算 30
第3章 研究方法 33
3.1 實驗系統簡介 33
3.2 實驗設備與量測儀器 34
3.3 第四代傾斜式循環流體化床構造介紹 42
3.4 實驗平台與床體校正 44
3.5 實驗參數 48
3.6 實驗流程 51
3.7 數據分析 52
第4章 結果與討論 54
4.1 圓形管床體之材料測試結果 54
4.2 方形管床體之材料測試結果 56
4.3 圓形管擋板之材料測試結果 60
4.4 方形管擋板之材料測試結果 64
第5章 結論與建議 67
5.1 結論 67
5.2 建議 68
參考文獻 71
[1]經濟部能源局 (2012)。能源查核與節約能源案例手冊-空調系統。
[2]S. Misha, S. Mat, M.H. Ruslan and K. Sopian (2012). Review of solid/liquid desiccant in the drying applications and its regeneration methods. Renewable and Sustainable Energy Reviews, 16, 4686–4707.
[3]S. Neti and E.I. Wolfe (2000). Measurements of effectiveness in a silica gel rotary exchanger. Applied Thermal Engineering, 20, 309-322.
[4]Ahmed M. Hamed (2002). Theoretical and experimental study on the transient adsorption characteristics of a vertical packed porous bed. Renewable Energy (27), 525-541.
[5]N. Subramanyam, M.P. Maiya and S. S. Murthy (2004).Application of desiccant wheel to control humidity in air-conditioning systems.Applied Thermal Engineering, 24, 2777–2788.
[6]J. D. Chung and D.Y. Lee (2009). Effect of desiccant isotherm on the performance of desiccant wheel. International Journal of Refrigeration, 32, 720-726.
[7]A. Ramzy K., R. Kadoli, T.P. Ashok Babu (2011), Improved utilization of desiccant material in packed bed dehumidifier using composite particles, Renewable Energy 36, 732-742.
[8]Daizo Kunii (1991). Fluidization Engineering.
[9]Ahmed M. Hamed, Walaa R. Abd El Rahman, S.H. El-Eman (2010). Experimental study of the transient adsorption/desorption characteristics of silica gel particles in fluidized bed. Energy, 35, 2468-2483.
[10]陳子東 (2013)。矽膠流體化床之性能研究。國立臺灣大學機械工程學系研究所碩士論文,中華民國。
[11]D. Geldart (1973). Type of Gas Fluidization. Powder Technology, Vol.7, pp.285-292.
[12]K. Smolders, J. Baeyens (2001). Gas fluidized beds operating at high velocities: a critical review of occurring regimes. Poowder Technology, Vol.119, pp.269-291.
[13]J. Bridgwater (1976). Powder Technology, 11, 199.
[14]Ahmed M. Hamed (2005). Experimental investigation on the adsorption/desorption processes using solid desiccant in an inclined-fluidized bed. Renewable Energy, 30, 1913–1921.
[15]Watcharop Chaikittisilp, Teerapong Taenumtrakul, Peeravuth Boonsuwan, Wiwut Tanthapanichakoon, Tawatchai Charinpanitkul (2006). Analysis of solid particle mixing in inclined fluidized beds using DEM simulation. Chem. Eng. Journal 122, 21–29.
[16]Merry, J.M.D.,and Davidson, J.F. (1973). Trans. Instn. Chem. Engrs. 51, 361-368.
[17]Yates JG (1983). Fundamentals of fluidized-bed chemical processes. London: Butterworths.
[18]江國棟 (1993)。雙塔式矽膠除濕系統之測試與模擬分析。國立臺灣大學機械工程學系研究所碩士論文,中華民國。
[19]Alexander Reichhold, and Hermmann Hofbauer (1995). Internally circulating fluidized bed for continuous adsorption and desorption. Chemical Engineering and Procseesing, 34, 521-527.
[20]Akihiko HORIBE, Sukmawaty, Naoto HARUKI , and Daiki HIRAISHI (2012). Continuous Sorption and Desorption of Organic Sorbent Powder in Two Connected Fluidized beds. Journal of Thermal Science and Technology, 7, 564-576.
[21]C.M Yang, C.C. Chen, and S.L. Chen (2013). Energy-efficient air conditioning system with combination of radiant cooling and periodic total heat exchanger. Energy, 59, 467-477.
[22]吳柏勳 (2014)。矽膠循環流體化床應用於吸附除濕系統之研究。國立臺灣大學機械工程研究所碩士論文,中華民國。
[23]江宜瑾. (2015)。循環式傾斜流體化床應用於吸附除濕系統。國立臺灣大學機械工程學系研究所碩士論文,中華民國。
[24]洪泰智. (2016)。改良式傾斜循環流體化床應用於吸附除濕系統。國立臺灣大學機械工程學系研究所碩士論文,中華民國。
[25]Stephen Brunauer, Lola S. Deming, W. Edwards Deming, Edward Teller (1940). On a Theory of the Van Der Waals Adsorption of Gases. Journal of the American Chemical Society, Vol.62, pp.1723-1732.
[26]侯國豔,冀志江,王繼梅,王曉燕。調濕材料的研究現狀,生態環境建材。
[27]Noll, K. E., V. Gounaris, and W. S. Hou (1992). Adsorption technology for air and water pollution control. Lewis Pubbishers, Inc., 32‐34.
[28]M. Goldworthy, and S.D. White (2012). Limiting performance mechanisms in desiccant wheel dehumidification. Applied Thermal Engineering, 44, 21-28.
[29]Weilong Wang, Luoming Wu, Zhong Li, Yutang Fang, Jing Ding, and Jing Xiao (2013). An Overview of Adsorbents in the Rotary Desiccant Dehumidifier for Air Dehumidification. Drying Technology: An International Journal, 31, 1334-1345.
[30]K.C. Ng, H.T. Chua, C.Y. Chung, C.H. Loke, T. Kashiwagi, A. Akisawa, B.B.Saha (2001). Experimental investigation of the silica gel-water adsorption isotherm characteristics. Applied Thermal Engineering, 21, 1631-1642.
[31]China Silica Gel Co. Silica Gel Basic. Retrieved May 11, 2019, from: http://www.china-silicagel.com/knowledge.html
[32]Warrier, K.G.K.; Rajeshkurnar, S (2001). High temperature stabilisation of pores in sol-gel titania in presence of silica. Journal of Porous Materials, 8, 311–317.
[33]Butterworths LondoIl, G.W. Brundrett (1987). Handbook of Dehumidification Technology.
[34]Olivier Ducreux and Christophe Nedez. Air and Gas Drying with AxSorb Activated Alumina. . Retrieved May 11, 2018, from: http://usa.axens.net/en/component/axensdocuments/875/air-and-gas-drying-with-axsorb-activated-alumina/english.html
[35]Wen-Ching Yang. Handbook of fluidization and fluid particle system. Marcel Dekker, Inc. New York, 2003. Chapter 5.
[36]Wen, C.Y. & Y.H. Yu (1966). A generalized method for predicting the minimum fluidization velocity. AIChE J 12, 610-612.
[37]D. P. O’Dea, V. Rudolph*, & Y. 0. Chong (1990). The effect of inclination on fluidized beds. Powder Technology, 63, 169-178.
[38]曾品儒. (2017)。傾斜式循環流體化床之操作限制及設計方法。國立臺灣大學機械工程學系研究所碩士論文,中華民國。
[39]W. Rohsenow (1946). Psychrometric determination of absolute humidity at elevated pressures. Refrigerating Engineering, 51, 423.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top