跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/07 15:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔣守皓
研究生(外文):Shou-HaoJiang
論文名稱:選擇性雷射熔融法以多重軌跡掃描不鏽鋼316L金屬粉末之熔池數值分析
論文名稱(外文):Numerical Analysis on Molten Pool of Stainless Steel 316L Metal Powder by Multi-track Scanning in Selective Laser Melting
指導教授:溫昌達
指導教授(外文):Chang-Da Wen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:132
中文關鍵詞:選擇性雷射熔融多重軌跡掃描馬蘭戈尼效應溫度梯度基板預熱
外文關鍵詞:Selective Laser MeltingMulti-track scanningMarangoni effectTemperature gradientSubstrate preheating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文主要利用ANSYS Fluent建立三維暫態數值模型,模擬選擇性雷射熔融法(Selective Laser Melting, SLM)以多重軌跡掃描(Multi-track)不鏽鋼316L粉末,考慮馬蘭戈尼效應,比較不同雷射功率、掃描速率下對粉末溫度及熔池尺寸之影響,並根據能量利用性與製程時間定義熔融效益參數進行雷射參數篩選,以探討改變掃描間距及掃描方式的影響,最後再針對基板與粉末預熱對溫度梯度、冷卻速率作進一步的分析。根據模擬結果顯示,當掃描速率640mm/s下,馬蘭戈尼效應對粉末溫度的影響會隨著雷射功率的增加而明顯變大。而固定雷射功率150W時掃描速率愈小,馬蘭戈尼效應對熔池影響會愈劇烈,造成熔池發展較為深、窄,故SLM使用此參數時應不可忽略此效應的影響。而透過參數篩選雷射功率200W,掃描速率800mm/s為粉末熔融效益最佳的參數,由此探討不同掃描間距發現,軌跡重疊率超過50%時,會使雷射作用區域的溫度梯度過大,而易造成熱應力集中,對於零件製造相當不利,相較下軌跡重疊率30%時溫度梯度較低,其熔池也具有良好的結合性。基板預熱能有利於降低溫度梯度及冷卻速率,其降低幅度會隨著預熱溫度的增加而變大,但為了避免材料過度蒸發,故此預熱溫度控制為700K內較佳。而粉末預熱由於雷射加工時粉末原先預熱的熱量已被大量散失,故造成其對溫度梯度、冷卻速率以及熔池尺寸皆無明顯改變,也無法有效改善零件品質。
In this study, a numerical model is established to investigate the molten pool of stainless steel 316L metal powder by multi-track scanning in Selective Laser Melting (SLM). The results show that the influence of Marangoni effect on the temperature field becomes greater with increasing laser power at scanning speed 640mm/s. When laser power maintains 150W, the decrease of scanning speed makes the shape of molten pool much deeper and narrower. Based on the results, it is inappropriate to neglect Marangoni effect during SLM simulation with these laser parameters. According to parameters analysis with energy utilization and manufacturing time, laser power 200W and scanning speed 800mm/s are more suitable parameters for melting effectiveness of powder. Through the analysis of hatch spacing which is found, if the overlapping rate exceeds 50%, it makes temperature gradient too large and is easy to cause thermal stress concentration, which is unfavorable for the manufacturing parts. Compared to the overlapping rate 30%, the temperature gradient is lower and molten pools show good bonding. We have also researched the implementation of two preheating methods to improve SLM process. Substrate preheating can help to have the lower temperature gradient and cooling rate. To avoid causing excessive the evaporation of material, it is better that the preheating temperature is controlled under 700K. Powder preheating shows no significant change in reducing the temperature gradient and the cooling rate. Therefore, it couldn’t improve the quality of the parts effectively.
摘要 I
誌謝 XI
目錄 XII
表目錄 XVI
圖目錄 XVII
符號說明 XXII
第一章 緒論 1
1-1 研究背景 1
1-1.1 積層製造 1
1-1.2 選擇性雷射熔融法 2
1-2 文獻回顧 5
1-2.1 金屬粉末顆粒研究 5
1-2.2 馬蘭戈尼效應研究 9
1-2.3 選擇性雷射熔融法數值研究 11
1-2.4 零件表面品質研究 16
1-3 研究動機與目的 20
1-4 全文架構 21
第二章 基礎理論 22
2-1 雷射基礎理論 22
2-1.1 雷射基本原理 22
2-1.2 Nd-YAG雷射 23
2-1.3 高斯熱源能量分佈 27
2-2 熱傳理論介紹 34
2-2.1 相變化 34
2-2.2 熱對流與熱輻射 37
2-2.3 馬蘭戈尼效應 38
第三章 數值分析 41
3-1 物理模型 41
3-1.1 統御方程式 44
3-1.2 邊界條件 45
3-1.3 初始條件 47
3-2 數值方法 48
3-3 金屬材料熱物理性質 51
3-3.1 不鏽鋼316L(SS316L)材料性質 51
3-3.2 金屬粉末層等效熱物理參數 51
3-4 數值計算求解流程 59
3-5 物理模型測試 61
3-5.1 網格獨立測試 61
3-5.2 時間步階測試 63
第四章 結果與討論 65
4-1 熔池尺寸實驗比較 65
4-2 馬蘭戈尼效應分析 71
4-2.1 粉末溫度之影響 72
4-2.2 熔池尺寸之影響 82
4-3 雷射製程參數分析 84
4-3.1 雷射多重軌跡掃描分析 85
4-3.2 雷射參數熔融效益分析 89
4-4 掃描間距之探討 97
4-4.1 溫度梯度之影響 97
4-4.2 熔池尺寸之影響 100
4-5 掃描方式之探討 104
4-6 基板預熱之探討 110
4-6.1 溫度梯度之影響 110
4-6.2 冷卻速率之影響 112
4-6.3 熔池尺寸之影響 114
4-7 粉末預熱之探討 116
4-7.1 溫度梯度之影響 116
4-7.2 冷卻速率之影響 116
4-7.3 熔池尺寸之影響 119
4-8 預熱方式之比較 121
第五章 結論與未來工作 124
5-1 結論 124
5-2 未來工作 126
參考文獻 127
1.Elveflow, “Microfluidic 3D printer : selective laser melting, elveflow.com.
2.K. Kempen, L. Thijs, B. Vrancken, S. Buls, J. Van Humbeeck, and J.P. Kruth, “Lowering thermal gradients in Selective Laser melting by pre-heating the baseplate, Solid Freeform Fabrication Symposium Proceedings, 2013.
3.I. Yadroitsev, “Selective laser melting:direct manufacturing of 3D-objects by selective laser melting of metal powders, LAP Lambert Academic Publishing, 2009.
4.M. Mani, B. Lane, A. Donmez, S. Feng, S. Moylan, and R. Fesperman, “Measurement science needs for real-time control of additive manufacturing powder bed fusion processes, National Institute of Standards and Technology, NISTIR-8036, 2015.
5.A.B. Spierings and G. Levy, “Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades, Solid Freeform Fabrication Symposium Proceedings, pp. 342-353, 2009.
6.J. Zhou, Y. Zhang, and J.K. Chen, “Numerical simulation of random packing of spherical particles for powder-based additive manufacturing, Journal of Manufacturing Science and Engineering, Vol. 131, 2009.
7.M. Rombouts, L. Froyen, A.V. Gusarov, E.H. Bentefour, and C. Glorieux, “Light extinction in metallic powder beds: correlation with powder structure, Journal of Applied Physics, Vol. 98, 2005.
8.F. Thummler and R. Oberacker, “An introduction to powder metallurgy, Oxford Science Publications, 1993.
9.P.D. Lee, P.N. Quested, and M. Mclean, “Modelling of marangoni effects in electron beam melting, Philosophical Transactions of the Royal Society A, Vol. 356, pp. 1027-1044, 1998.
10.G. Tsotrid, H. Rother, and E.D. Hondros, “Marangoni flow and the shapes of laser-melted pools, Naturwissenschaften Vol. 76, pp. 216-218, 1989.
11.L. Han, F.W. Liou, and S. Musti, “Thermal behavior and geometry model of melt pool in laser material process, Journal of Heat Transfer, Vol. 127, pp.1005-1014, 2005.
12.L.X. Yang, X.F. Peng, and B.X. Wang, “Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing, Internationa1 Journa1 of Heat and Mass Transfer, Vol. 44, Issue 23, pp. 4465-4473, 2001.
13.K. Antony and N. Arivazhagan, “Studies on energy penetration and Marangoni effect during laser melting process, Journal of Engineering Science and Technology, Vol. 10, No. 4, pp.509-525, 2015.
14.Y. Li and D. Gu, “Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder, Materials and Design, Vol. 63, pp.856-867, 2014.
15.K. Antony, N. Arivazhagan, and K. Senthilkumaran, “Numerical and experimental investigations on laser melting of stainless steel 316L metal powders, Journal of Manufacturing Processes, Vol. 16, pp. 345-355, 2014.
16.A. Foroozmehr, M. Badrossamay, E. Foroozmehr, and S. Golabi, “Finite Element Simulation of Selective Laser Melting process considering optical penetration depth of laser in powder bed, Materials and Design, Vol. 89, pp. 255-263, 2016.
17.Y. Huang, L.J. Yang, X.Z. Du, and Y.P. Yang, “Finite element analysis of thermal behavior of metal powder during selective laser melting, Internationa1 Journa1 of Thermal Science, Vol. 104, pp. 146-157, 2016.
18.X. Dinga, L. Wanga, and S. Wanga, “Comparison study of numerical analysis for heat transfer and fluid flow under two different laser scan pattern during selective laser melting, Optik, Vol. 127, pp. 10898-10907, 2016.
19.D. Wang, Y. Yang, X. Su, and Y. Chen, “Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM, The International Journal of Advanced Manufacturing Technology, Vol. 58, Issue 9-12, pp 1189-1199, 2012.
20.E. Yasa, J. Deckers, and J.P. Kruth, “The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts, Rapid Prototyping Journal, Vol. 17, pp. 312-327, 2011.
21.C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing1, “Review of selective laser melting: Materials and applications, Applied Physics Reviews, Vol. 2, Issue 4, 2015.
22.R. Klein, “Laser welding of plastics, Wiley-VCH, 2011.
23.楊隆昌, “雷射發展的趨勢與應用, September, 2013.
24.劉國基、張百齊, “Nd-YAG雷射的加工應用, 遠東學報, Vol.19, 2001.
25.“Gaussian beam optics, marketplace.idexop.com, A157-A172, August, 1997.
26.S. Louhenkilpi and F. Imre, “A lézersugnyagtudományifolyamatszimuláció - Hőkezelésmodellezése, 2011.
27.許阿娟, 朱嘉雯, 林桂芬, 陳志隆,“光學系統設計進階篇-第九章 高斯光束,fourth version, 2002版.
28.B.V. L’vov, “Thermal decomposition of solids and melts: new thermochemical approcach to the mechanism, kinetics and methodology, Springer, Vol.7, pp.35-38, 2007.
29.ANSYS, “Ansys Fluent. 15.0 Theory Guide, ANSYS Inc., 2013.
30.V.R. Voller and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems, International Journal of Heat and Mass Transfer, Vol.30, pp.1709-1719, 1987.
31.Z. Zhang, “Modeling of Al evaporation and marangoni flow in electron beam button melting of Ti-6Al-4V. Master’s Thesis, The University of British Columbia, Vancouver, 2013.
32.J.C. Chen and Y.C. Huang, “Thermocapillary flows of surface melting due to a moving heat flux, International Journal of Heat and Mass Transfer, Vol.34, pp.663-671, 1991.
33.S. Patankar, “Numerical Heat Transfer and Fluid Flow, Hemisphere Series on Computational Methods in Mechanics and Thermal Science, 1980.
34.Y.P. Lei, H. Murakawa, Y. W. Shi, and X.Y. Li, “Numerical analysis of the competitive influence of marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting, Computational Materials Science, Vol.21, pp.276-290, 2001.
35.K.C. Mills, “Recommended values of thermophysical properties for selected commercial alloy, Woodhead Publishing, 2002.
36.T.C. Chawla, D.L. Graff, R.C. Borg, G.L. Bordner, D.P. Weber, and D. Miller, “Thermophysical properties of mixed oxide fuel and stainless steel type 316 for use in transition phase analysis, Nuclear Engineering and Design, Vol.67, pp.57-74, 1981.
37.J. Yin, H. Zhu, L. Ke, W. Lei, C. Dai, and D. Zuo, “Simulation of temperature distribution in single metallic powder layer for laser micro-sintering, Computational Materials Science, Vol. 53, pp. 333-339, 2012.
38.A. Hussein, H. Liang, C. Yan, and R. Everson, “Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting, Materials and Design, Vol. 52, pp. 638-647, 2013.
39.ANSYS, “ANSYS Fluent. 15.0 UDF Manual, ANSYS Inc., 2013.
40.T.C. Chawla, D.L. Graff, R.C. Borg, G.L. Bordner, D.P. Weber, and D. Miller, “Thermophysical properties of mixed oxide fuel and stainless steel type 316 for use in transition phase analysis, Nuclear Engineering and Design, Vol.67, pp.57-74, 1981.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top