跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 02:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅小雯
研究生(外文):Xiao-Wen Lo
論文名稱:以黃藤製作SiC/鋁矽合金複合材料之研究
論文名稱(外文):Fabrication of SiC/aluminum-silicon alloy composite from rattan bio-charcoal
指導教授:林永仁林永仁引用關係
指導教授(外文):Yung-Jen Lin
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:105
中文關鍵詞:黃藤SiC/鋁矽合金
外文關鍵詞:rattanSiC/aluminum-silicon
相關次數:
  • 被引用被引用:1
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本研究的主旨是利用黃藤製備陶瓷/金屬複合材料。首先將黃藤在Ar氣氛中經過碳化處理後,形成藤木炭,再將適量矽粉及鋁合金塊材與藤木炭一起放置在氧化鋁坩鍋裡,在高溫和保護氣體下,一次處理即合成碳化矽/鋁矽合金複合材料。 實驗結果發現,在反應溫度1500℃,可成功製備具黃藤結構之碳化矽。而此多孔性碳化矽是由直徑250μm、6-20μm、3μm等三種不同大小的連通孔洞所構成的。在1500℃持溫16小時合成的多孔性碳化矽,具有低密度(體密度為1.51g/cm3),高孔隙率(開放性孔隙率為44±1%),其比表面積為5.5m2/g,抗壓強度為44±2MPa,抗彎強度為13±5MPa。 溫度在1300℃~1500℃,初始鋁與矽的比例為Al-10at%Si、Al-20at%Si和Al-30at%Si的液相滲透試片,各有不同的液相滲透現象。越高溫及含矽量越少的試片越容易產生碳化鋁,實驗結果顯示最佳的滲透溫度為1400℃,成分為 Al-20at%Si。由試片密度結果顯示,在常壓液相滲透過程中,滲透量大致上會隨著滲透時間的增長而增加,但滲透時間3小時後,試片趨近於飽和。在滲透時間為5小時,其試片的體密度可達2.27 g/cm3,開放性孔隙率為19±1%,抗壓強度為316±5MPa,抗彎強度為138±5MPa,而觀察複合材料的破斷面是以沿晶破壞為主。
The purpose of this research is to fabricate ceramic/metal composite material from rattan. Rattan was first carbonized in Ar to form charcoal. Then proper amount of Si powder and pieces of aluminum alloy were put into the alumina crucibles with the charcoal. After heat-treatment in Ar and at high temperature, composites of silicon carbide/aluminum-silicon alloy could be obtained. The results of the experiments showed that silicon carbide with the structure of rattan could be produced after reaction at 1500. The porous ℃silicon carbide preserved the structure of the rattan and was made up of three kinds of interconnected holes with the diameters of 250µm, 6-20µm, and 3µm, respectively. The porous silicon carbide after heat-treatment at 1500 for 16℃ hours had bulk density 1.51g/cm3, open porosity 44±1%, specific surface area 5.5 m2/g, compressive strength 44±2MPa, and flexural strength 13±5 MPa. As for the fabrication of SiC/Al-Si composites, the heat-treatment temperatures ranged from 1300~1500.℃℃ The initial proportion of 2024 aluminum alloy and silicon ranged from Al-10at%Si to Al-30at%Si. During the high temperature reaction, Si reacted to form SiC and Si-Al alloy melted to infiltrate into the porous SiC. However, at higher temperature and less silicon concentration, aluminum carbide would form. The result of this research indicated that the proper conditions for SiC/Al-Si composite fabrication without noticeable aluminum carbide was 1400and Al℃-20at%Si. Under such conditions and heat-treatment for 5 hours, the bulk density of the sample was 2.27 g/cm3, the open porosity was 19±1%, the compressive strength was 316±5MPa and the flexural strength was 138±5MPa. Furthermore, it was also noted that intergranular fracture was the main feature of the composite material during fracture.
目錄
中文摘要Ⅰ
英文摘要Ⅲ
目 錄Ⅳ
圖目錄Ⅷ
表目錄IV

第一章 前言1
第二章 文獻回顧3
2-1 碳化矽的特性5
2-2 鋁矽合金材料之簡介8
2-2-1過共晶鋁矽合金10
2-3 金屬/陶瓷複合材料之簡介14
2-4 金屬/陶瓷複合材料製程15
2-5 常壓液相滲透法之原理18
2-6 碳化矽和鋁合金之界面反應23
第三章 實驗流程27
3-1 實驗規劃27
3–2 黃藤27
3–3 黃藤的碳化28
3–4 製備具黃藤結構之碳化矽陶瓷28
3-5 除碳31
3–6 滲透金屬31
3–7 一次熱處理製備具黃藤結構之碳化矽陶瓷/鋁合金複合材32
3–8 性質量測33
3-8-1 DTA-TGA分析33
3-8-2 試片之bulk density變化33
3-8-3阿基米得法測密度及開放性孔隙率33
3-8-4反應前後試片的真密度34
3-8-5計算滲透率34
3-8-6 X-ray 繞射分析35
3-8-7 SEM,光學顯微鏡顯微組織觀察、EDS成份分析35
3-8-8 TEM顯微組織觀察、電子束繞射36
3-8-9 抗壓強度測試36
3-8-10抗彎強度測試37
3-8-11破斷面微觀組織分析38
第四章 結果與討論39
4–1 藤木炭39
4-1-1TGA分析39
4-1-2XRD分析39
4-1-3 SEM分析40
4-1-4開放性孔隙及密度分析41
4-1-5抗壓強度測試41
4-2 多孔性碳化矽41
4-2-1 XRD分析41
4-2-2 SEM分析43
4-2-3 TEM分析43
4-2-4 開放性孔隙及密度分析44
4-2-5 抗壓強度測試44
4-3 滲透條件之選定44
4-4 滲透鋁矽金屬45
4-4-1 XRD分析45
4-4-2 OM、SEM和EDS分析46
4-4-3 開放性孔隙及密度分析47
4-4-4 抗壓強度分析47
4-4-5 抗彎強度分析48
4-4-6破斷面微觀組織分析49
第五章 結論83
参考文獻85

圖目錄
圖2 . 1 β-碳化矽結構圖[20]8
圖2 . 2 鋁合金系統12
圖2 . 3 鋁矽合金二相圖13
圖2 . 4 液體在固體表面的潤濕現象19
圖2 . 5 水平毛細管之流體示意圖22
圖2 . 6 1000℃的Al-C-Si三相圖[52]25
圖3 . 1以黃藤製作碳化矽之實驗流程29
圖3 . 2一次熱處理製備具黃藤結構之碳化矽陶瓷/鋁合金複合材料之實驗流程30
圖3 . 3 藤木炭與矽化合之示意圖31
圖3 . 4 一次熱處理常壓液相滲透製備碳化矽/鋁合金示意圖32
圖3 . 5彎曲測試示意圖38
圖4 . 1 黃藤之TGA圖51
圖4 . 2 黃藤之XRD圖52
圖4 . 3 藤木炭之SEM圖 ( a )~( d )為縱切面圖,( e )~( h )為橫截面圖53
圖4 . 4 藤木炭之應力應變圖54
圖4 . 5以石墨坩堝在1500℃不同反應時間製作碳化矽的XRD圖55
圖4 . 6以氧化鋁坩堝在1500℃不同反應時間製作碳化矽的XRY圖56
圖4 . 7.以石墨坩鍋製作碳化矽的反應時間對未反應碳百分比及重量增
加百分比之關係圖57
圖4 . 8 以氧化鋁坩鍋製作碳化矽的反應時間對未反應碳百分比及重量
增加百分比之關係圖58
圖4 . 9 以石墨坩堝製成碳化矽之SEM圖 ( a )、( b )為縱切面圖,
( c )、( d )為橫截面圖59
圖4 . 10 以氧化鋁坩堝製成碳化矽之SEM圖 ( a )、( b )為縱切面圖,
( c )、( d )為橫截面圖60
圖4 . 11 在1500℃反應16小時後之(a) TEM 照片,(b) 中央之選區繞射圖61
圖4 . 12 碳化矽之應力應變圖62
圖4 . 13為矽含量10at%,試片經1400℃滲透,滲透時間為(a)1 ,(b)3
,(c)5 ,(d)8小時試片之XRD圖64
圖 4 . 14、為矽含量20at%,試片經1小時滲透,滲透溫度為(a) 1000℃,
(b) 1100℃,(c) 1200℃,(d) 1300℃,(e) 1400℃,(f) 1500℃, 試片
之XRD圖65
圖 4 . 15、為矽含量30at%,試片經1小時滲透,滲透溫度為(a) 1100℃,
(b) 1200℃,(c) 1300℃,(d) 1400℃,(e) 1500℃,試片之XRd圖66
圖 4 . 16、為矽含量20at%,試片經1400℃滲透,滲透時間為(a)1,(b)3,
(c)5,(d)8小時試片之XRD圖67
圖4 . 17 試片經1400℃持溫1 小時滲透後之試片(a)(b)SEM圖及(c)EDS圖68
圖4 . 18 試片經1400℃持溫3 小時滲透後之試片(a)(b)SEM圖及(c)EDS圖69
圖4 . 19 試片經1400℃持溫5 小時滲透後之試片(a)(b)SEM圖及(c)EDS圖70
圖4 . 20藤木炭、具黃藤結構之多孔碳化矽與經1400℃持溫1、3、5小時
滲透鋁矽合金之試片之開孔隙率與滲透時間關係圖72
圖4 . 21 具黃藤結構之多孔碳化矽與經1400℃持溫1、3、5小時滲透鋁矽
合金試片之應力應變圖73
圖4 . 22 藤木炭、具黃藤結構之多孔碳化矽與經1400℃持溫1、3、5小時
滲透鋁矽合金之試片之抗彎強度74
圖4 . 23 (a)藤木炭、(b)具黃藤結構之多孔碳化矽與經1400℃持溫(c)1、
(d)3、(e)5小時滲透鋁矽合金之試片經抗彎測試之荷重-位移曲線圖75
圖4 . 24 開孔隙率對抗壓強度的影響77
圖4 . 25 開孔隙率對抗彎強度的影響(a)試片實驗值,(b)理論值78
圖4 . 26 具黃藤結構之碳化矽破斷面的(fracture toughness)SEI訊號圖79
圖4 . 27 滲透試片破斷面的(fracture surface)SEI訊號圖80
圖4 . 28 滲透試片破斷面的(fracture surface)OM圖82

表目錄
表 2 . 1 碳化矽的基本物理特性6
表 2 . 2 幾種常見的碳化矽晶體結構7
表 2 . 3 兩種碳化矽的基本物理特性7
表 2 . 4 鋁矽元素熱性質表[37]14
表 2 . 5 纖維材料與鋁合金的潤濕角[38] 17
表 3 . 1 2024鋁合金之組成32
表 3 . 2 Keller腐蝕液化學成分表36
表 4 . 1 黃藤的碳化過程之收縮率51
表 4 . 2 藤木炭的密度及開孔隙率54
表 4 . 3 碳化矽的密度及開孔隙率62
表 4 . 4 持溫時間為1小時,矽含量對可液相滲透溫度之關係63
表 4 . 5 Al-20%Si,1400℃液相滲透試片之密度、開孔隙率及滲透透71
表 4 . 6 藤木炭、具黃藤結構之多孔性碳化矽和滲透後試片之機械性質76
参考文獻
1. H. Jin, “China's experience in trade statistics on bamboo and rattan," J. Bamb. Ratt. Vol. 2, No. 4, pp. 417-427, 2003. 2. 王義仲,吳順昭,三種省產藤之解剖與物理性質之研究,國立台灣大學森林學研究所博士論文,民國八十一年. 3. C. M. Friend, “The effect of matrix properties on reinforcement in short alumina fibre-aluminium metal matrix composites," J. Mater. Sci. Vol. 22, No. 8, pp. 3005-3010, 1987. 4. E. Vogli, J. Mukerji, C. Hoffman, R. Kladny, H. Sieber, P. Greil, “Conversion of Oak to Cellular Silicon Carbide Ceramic by Gas-Phase with Silicon Monoxide," J. Am. Ceram. Soc. Vol. 84, No. 6, pp. 1236-1240, 2001. 5. S. H. Li, “Biomimicry of bamboo bast fiber with engineering composite materials," Mater. Sci. Eng. Vol. 3, issue 2, pp. 125-130, 1995. 6. H. Ni, X. D. Li, H. S. Gao, T. P. Nguyen,“Nanoscale structural and material characterization of bamboo-like polymer/silicon nanocomposite films," J. Nanotechnol. Vol. 16, No. 9, pp. 1746-1753, 2005. 7. J. M. Qian, J. P. Wang, G. J. Qiao, “Preparation of porous SiC ceramic with a woodlike microstructure by sol-gel and carbothermal reduction processing," J. Eur. Ceram. Soc. Vol. 24, No. 9, pp. 3251-3259, 2004. 8. J. M. Qian, J. P. Wang and Z. H. Jin, “Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal," Mater. Sci. Eng. Vol. 371, issue 2, pp. 229-235, 2004. 9. T. Ota, M. Takahashi, T. Hibi, M. Ozawa, S. Suzuki, Y. Hikichi and H. Suzuki, “Biomimetic Process for Producing SiC wood," J. Am. Ceram. Soc. Vol. 78, No. 12, pp. 3409-3411, 1995. 10. J. M. Qian, Z. H. Jin, X. W. Wang, “Porous SiC Ceramic Prepared by Reactive Infiltration of Liquid Silicon into Woodceramics," J. Xian Jiaotong Univ. Vol. 38, No. 4, pp. 93-96, 2004. 11. B. Sun, T. Fan and D. Zhang, “Production of morph-genetic TiC/C ceramic," Mater. Lett. Vol. 58, No. 4, pp. 798-801, 2004. 12. G. J. Qiao, R. Ma, C. Ning, “Microstructure transmissibility in preparing SiC ceramics from natural wood," J. Mater. Process. Technol. Vol. 120, No. 4, pp. 107-110, 2002. 13. S. S. Park, “Silicon/Silicon Carbide Composites Fabricated by Infiltration of a silicon Melt into Charcoal," J. Am. Ceram. Soc, Vol. 82, No. 3, pp. 3251-3253, 1999. 14. D. Zhang, B. Sun, T. Fan, “The synthesis and microstructure of morph-geneticTiC/C ceramic," Carbon, Vol. 42, No. 6, pp. 177-182, 2004. 15. 吳健君,陳建忠,燃燒法合成碳化矽之精密陶瓷:直接合成與使用引燃劑,國立中正大學化學工程研究所碩士論文,民國八十五年. 16. 林博文,陶瓷技術手冊(下),中國粉末冶金協會,pp. 761,民國八十二年. 17. J. J. Biernacki, G. P. Wotzak, “Stoichiometry of the C + SiO2 Reaction," J. Am. Ceram. Soc. Vol. 72, No. 1, pp. 122-129, 1989. 18. 陳智勇,林俊一,碳熱還原二氧化矽製備碳化矽之動力學研究,國立台灣工業技術學院化學工程技術研究所碩士論文,民國八十六年. 19. 歐國隆,張順太,碳化矽顆粒強化鋁合金複合材料之製造及特性評估,國立台灣大學材料科學與工程研究所碩士論文,民國八十年. 20. A. R. West, Solid state chemistry and its applications, John Wiley&Sons, 1989. 21. 黃肇瑞,2H/固溶體對於SiC/AlN複合材料性質的評估,台北,中華民國行政院國家科學委員會計畫編號:NSC81-0405-E006-016,民國八十二年. 22. G. Carotenuto, A. Gallo and L. Nicolais, “Degradation of SiC particles in aluminium-based composites," J. Mater. Sci. Vol. 29, No. 19, pp. 5072-5077, 1994. 23. C. R. Loper, Jr., “Fluidity of Aluminum-Silicon Casting Alloys," J. AFS Trans. Vol. 100, No. 4, pp. 533-538, 1992. 24. 江俊憲,曹紀元,高矽含量噴覆成形過共晶鋁矽合金之固態成形與半固態製程研究,國立成功大學材料科學研究所博士論文,民國九十四年. 25. G. L. Armstrong and R. D. Luckett, “Aluminum Die Casting Alloys," Die Casting Engineer, (Janurary-February), pp. 10-16, 1984. 26. A. Hellawell, “The Growth and Structure of Eutectics with Silicon and Germanium," Prog. Mater. Sci. Vol. 15, No. 1, pp. 3-78, 1970. 27. H. Ralph, D. D. Pramod, T. H. Donald, G. Molly, K. K. Kenneth, “Select Values of the Thermodynamic Properties of Binary Alloys," ASM, pp. 210-212, 1973. 28. B. Closset and J. E. Gruzleski, “Mechanical Properties of A356.0 Alloys Modified with Pure Strontium," J. AFS Trans. Vol. 90, No. 19, pp. 453-464, 1982. 29. 樊翔雲、林招松、潘永寧,凝固冷卻參數對擠壓狀態A356 鋁合金顯微組織與機械性質的影響,中華民國鑄造學會78 年度論文發表會論文集,台北,pp. 56-76, (Dec.) 1989. 30. P. S. Mohanty, J. E. Gruzleski, “Grain Refinement Mechanism Hypoeutectic Al-Si alloys," Acta Mater. Vol. 44, No. 9, pp. 3749-3760, 1996. 31. D. G. Apelian, K. Sigworth and K. R. Whaler, “Assessment of Grain Refinement and Modification of Al-Si Foundry Alloys by Thermal Analysis," J. AFS Trans. Vol. 94, No. 4, pp. 297-307 ,1984. 32. D. Apelian and J. J. Cheng, “Al-Si Processing Variables: Effect on GrainRefinement and Eutectic Modification," J. AFS Trans. Vol. 93, No. 5, pp. 797-808, 1986. 33. T. J. Hurley and R. G. Atkinson, “Effect of Modification Pratice on Aluminum A356 Alloys," J. AFS Trans. Vol. 93, pp. 291-296, 1985. 34. R. D. Kassing, J. N. Schweitzer and F. L. Wuetig, “Sodium Versus Strontium for the Modification of hypereutectic Aluminum-Silicon Alloys," J. AFS Trans. Vol. 87, pp. 359-366, 1979. 35. 邱弘興、廖高宇、潘永寧,經調質及細化處理之A356 鋁合金其冒口補充效率之研究,中華民國鑄造學會79 年度論文發表會論文集,中壢,pp. 63-73, (Dec.) 1989. 36. X. G. Song, X. F. Bian, X. G. Qi, X. G. Liu, J. Y. Zhang, B. P. Wang, and L. M. Zhu, “Effect of AlP master alloy on grain refinement of primary silicon in eutectic Al-Si alloys," J. Univ. Sci. Technol. Beijing. Vol. 11, No. 1, pp. 81-84, 2004. 37. 簡正明,謝曉星,微製程技術於矽晶片上微管道製程之研究,國立中山大學機械與機電工程研究所碩士論文,民國九十年. 38. S. T. Mileiko, Metal and Ceramic Based Composites, Elsevier, 1997. 39. J. L. Jorstad, “The Hypereutectic Alumium-Silicon Alloy Used to Cast the Vega Engine Block," Modern Casting, Vol. 51, pp. 59-64, 1971. 40. R. M. Bruce, F. Y. Donald, H. O. Theodore, Fundamentals of Fluid Mechanics, John Wiley & Sons, 2004. 41. T. J. Lienert, E. D. Brandon and J. C. Lippold, “Laser and electron beam welding of SiCp reinforced aluminum A-356 metal matrix composite," Scripta Metall. Vol. 28, No. 7, pp. 1341-1346, 1993. 42. N. B. Dahotre, T. D. McCay and M. H. McCay, “Laser processing of a SiC/Al-alloy metal matrix composite," J. Appl. Phys. Vol. 65, pp. 5072-5077, 1989. 43. G. Carotenuto, A. Gallo and L. Nicolais, “Degradation of SiC particles in aluminium-based composites," J. Mater. Sci. Vol. 19, pp. 4967-4974, 1994. 44. T. Iseki, T. Kameda, T. Maruyama, “Interfacial reactions between SiC and aluminium during joining," J. Mater. Sci. Vol. 19, pp. 1692-1698, 1984. 45. P. R. chidambaram, A. Meier, G. R. Edward, “The nature of interfacial phenomena at copper-titanium/alumina and copper-oxygen/alumina interface," Mater. Sci. Eng. Vol. 206, issue 2, pp. 249-258, 1996. 46. L. Cao, L. Geng, C. K. Yao and T. C. Lei, “The role of deformation heating in tensile testing of aluminum-killed steel," Scripta Metall. Vol. 23, issue 2, pp. 223-228, 1989. 47. R. Warren and C. H. Anderson, “Surface Anisotropy in the Expansion Behaviorof Laminated Quasi-Isotropic Composites," J. Compos. Mat. Vol. 15, pp. 96-103, 1984. 48. G. W. Han, D. Feng, M. Yin, W. J. Ye, “Ceramic/aluminum co-continuous composite synthesized by reaction accelerated melt infiltration," Mater. Sci. Eng. Vol. A225, pp. 201-207, 1997. 49. J. S. Reed, Principles of ceramics processing, Second edition, John Wiley & Sons, pp. 21-25, 1995. 50. J. C. Viala, N. Pecillon, F. Bosselet, J. Bouix, “Phase equilibria at 1000OC in the Al-C-Si-Ti quaternary system:an experimental approach," Mater. Sci. Eng. Vol. A229, pp. 95-113, 1997. 51. R. J. Absenault and C. S. Pande, “Developments in the Processing and Properties of Particulate Al-Si Composites," Scripta Metall. Vol. 49, issue 11, pp. 31-37, 1997. 52. J. K. Park and J. P. Lucas, “Moisture effect on SiCp/6061 Al MMC: Dissolution of interfacial Al4C3," Scripta Metall. Vol. 37, issue 4, pp. 511-516, 1997. 53. C. Hu, T. N. Baker, “A new aluminium silicon carbide formed in laser processing," J. Mater. Sci. Vol. 32, No. 19, pp. 5047-5052, 1997. 54. J. C. Lee, J. P. Ahn, J. H. Shim, Z. Shi and H. I. Lee, “Microstructure and Interface Studies of Al/SiCp Composites Produced by Dynamic Compaction," Scripta Metall. Vol. 41, issues 8, pp. 895-900, 1999. 55. M. Nathan, “Interfacial reactions in metal matrix composites studied with a novel technique," J. Mater. Sci. Lett. Vol. 8, No. 3, pp. 311-314, 1989. 56. T. Iseki, T. Kameda, T. Maruyama, “Interfacial Reactions between SiC and Aluminum during Joining," J. Mater. Sci. Vol. 19, pp. 1692-1698, 1984. 57. J. H. Devletian, “SiC/Al Metal Matrix Composite," J. Weld. Vol. 66, issue 6 pp. 33-39, 1987. 58. K. Kannikeswaran and R. Y. Lin, “Trace Element Effects on Al-SiC Interfaces,"J. Met. pp. 17-19, 1987. 59. Y. Tajima, W. D. Kingery, “Diffusion of Ion Implantated Aluminum in Silicon Carbide," J. Chem. Phys. Vol. 77, No. 5, pp. 2592-2598, 1982. 60. 翁儷芯,王松永,木陶瓷炭化條件對其基本性質及應用之影響,國立台灣大學森林環境暨資源學研究所博士論文,民國九十三年. 61. C. R. Rambo, H. Sieber, “Novel synthetic route to biomorphic Al2O3 ceramics," Adv. Mater. (FRG). Vol. 17, No. 8, pp. 1088-1091, 2005. 62. 蔡宗德,張連芳,孫建榮,過共晶鋁矽合金的生產及其應用,特種鑄造及有色合金,第四期,pp. 37-40,1990. 63. D. Zhang, B. Sun, T. Fan, T. Sakata, H. Mori, “Dry sliding friction and wear behavior of woodceramics/Al-Si composites," Mater. Sci. Eng. Vol. A342, issue1, pp. 287-293, 2003. 64. 高伯威,快速燒結碳化矽強化鋁基複合材料,台北,中華民國行政院國家科學委員會計畫編號:NSC78-0405-E110-004,民國七十八年. 65. O. Botstein, R. Arone and B. Shpigler, “Fatigue crack growth mechanisms in Al-SiC particulate metal matrix composites," Mater. Sci. Eng. Vol. 128, issue 1, pp. 15-22, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top