跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.158) 您好!臺灣時間:2025/12/01 09:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳明憲
研究生(外文):Ming-Sian Wu
論文名稱:油電混合動力系統煞車回充效率改善
論文名稱(外文):Improvement of HEV regenerative braking efficiency
指導教授:陳嘉勲
指導教授(外文):Jia-Shiun Chen
口試委員:黃秀英簡孟樹藍天雄
口試日期:2018-07-03
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:車輛工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:85
中文關鍵詞:煞車力分配煞車回充系統油電混合動力系統
外文關鍵詞:Braking force distributionRegenerative braking systemHybrid System
相關次數:
  • 被引用被引用:1
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
在混合動力車輛中,煞車回充系統改善車輛在市區行駛時,因為頻繁煞車所浪費的動力。藉由回收煞車能量將能源的利用效率提升。在提升回充效率與回收能量之餘,必須兼顧車輛本身的安全性。而本研究針對Prius的油電混合車(Hybrid Electric Vehicle, HEV)建立THS系統(Toyota Hybrid Systems)的車輛模型。利用Autonomie的軟體蒐集實車的相關數據,進行參數設定。將煞車力分配策略套入建立的模型中,將模擬結果與實車測試數據進行驗證,使兩者的差異值在合理範圍內,將此模型設定為基礎模型。參閱聯合國歐洲經濟委員會(Economic Commission for Europe, ECE¬¬¬¬-R13)的煞車安全規範,在保持車輛安全的情況下,分配前後輪的煞車力及煞車回充系統與機械煞車系統之間的配合。
本研究制定回充改善策略(Improvement of regenerative braking, IRB),並以此策略來調整變數(煞車強度(z)與實際前後輪煞車力比例(β))。依照煞車強度所調整的範圍不同分成IRB1與IRB2。依照不同的β值分別稱為(a)、(b)、(c)、(d),接著進行NEDC、FTP-75與HWFET駕駛循環的模擬測試。本論文將IRB1(a)、IRB1(b)、IRB1(c)、IRB1(d)、IRB2(a)、IRB2(b)、IRB2(c)、IRB2(d)與基礎模型進行比較,由於IRB1與IRB2分別在同樣的煞車強度範圍下,採用不同β值所獲得的改善結果皆相同,所以只取其中的IRB1(a)與IRB2(a)來觀察。從中得知IRB2(a)在FTP-75駕駛循環中可獲得最多改善。油耗改善約4.4%;回充能量則提升19.01%;回充效率則增加19.01%。
In hybrid vehicles, the regenerative braking system improved the efficiency of energy utilization by recovering the braking energy due to the wasted power of frequent braking when the vehicle was driving in the urban area. In addition to enhancing the efficiency of regenerative braking energy and energy recovery, the safety of the vehicle must be taken into consideration. In this study, Hybrid Vehicle (HEV) model was built for Toyota Hybrid Systems, and Autonomies software was used to collect real vehicle data and parameters. The brake controller was set into the established model. This model was run the simulation, and the simulation results was proved with the real vehicle test data. The difference between the two values was within a reasonable range, this model was regarded as the basic model. Referring to the Brake Safety Code of the UN Economic Commission for Europe (ECE-R13): the distribution of braking forces of the front and rear axles to the maximum extent, and connection of the regenerative braking system with the mechanical brake system while keeping the vehicle safe.
This study developed an Improvement of Regenerative Braking (IRB) strategy and used this strategy to adjust variables (brake strength (z), and actual front braking force, and ratio(β)). According to the adjusted brake strength range, it was divided into IRB1 and IRB2. According to the different β values, all of them were divided into (a), (b), (c), and (d), respectively. The simulation tests of the NEDC, FTP-75, and HWFET driving cycles were performed. This study compared IRB1(a), IRB1(b), IRB1(c), IRB1(d), IRB2(a), IRB2(b), IRB2(c), IRB2(d) with the base model. Because IRB1 and IRB2 had the same improvement results with different β values under the same braking intensity range, only IRB1(a) and IRB2(a) were observed. It was known that IRB2(a) could achieve the most improvement in the FTP-75 driving cycle. The fuel consumption was improved by 4.4%. The efficiency of regenerative braking was improved by 19.01%.
摘 要 i
ABSTRACT iii
誌 謝 v
目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 文獻回顧 4
1.4 研究目的及方法 5
1.5 論文架構 7
第二章 THS油電混合動力系統介紹 8
2.1 THS油電混合動力系統 8
2.2 THS動力系統運轉模式 11
2.2.1 低速模式 11
2.2.2 一般模式 12
2.2.3 高速模式 13
2.2.4 回充模式 14
第三章 煞車控制策略 15
3.1 煞車力分配 15
3.1.1 煞車力 15
3.1.2 前、後車輪的煞車力分配 16
3.1.3 煞車力規範 22
3.2 煞車回充系統 23
3.2.1 驅動馬達 24
3.2.2 車速 24
3.2.3 煞車強度(z) 25
3.2.4 電池殘電量(SOC) 25
3.2.5 煞車回充能量及回充效率 26
3.3 基礎模型的煞車力分配策略 26
3.4 回充改善煞車力分配策略 28
3.5 策略變數調整比較 31
第四章 油電混合系統基礎模型建立 34
4.1 基礎模型架構 34
4.1.1 模擬駕駛者模型 34
4.1.2 動力系統模型 35
4.1.3 車輛模型 36
4.2 動力分配控制器模型 38
4.3 發電機模型 40
4.4 馬達模型 41
4.5 電池模型 42
4.6 內燃機模型 44
4.7 變速箱模型 46
4.8 煞車控制器模型 47
4.9 前、後輪模型 48
第五章 模擬結果與分析 50
5.1 駕駛循環 50
5.1.1 NEDC測試循環 50
5.1.2 FTP-75 (市區)測試循環 51
5.1.3 HWFET(高速)測試循環 52
5.2 基礎模型 53
5.3 模型驗證 55
5.4 回充改善煞車力控制策略 56
5.5 其他駕駛循環的比較 60
5.5.1 FTP-75 駕駛循環 60
5.5.2 HWFET 駕駛循環 63
5.6 各駕駛循環之模擬結果比較 65
5.7 煞車力分配策略之變數調整比較 67
第六章 結論與未來展望 76
6.1 結論 76
6.2 未來展望 78
參考文獻 79
符號彙編 82
[1]https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html, "Global Monitoring Division," Earth System Research Laboratory, 07/24/2017.
[2]https://mook.u-car.com.tw/article157.html, "Hybrid油電混合動力系統演進," U-car徹底研究環保先驅, 03/08/2012.
[3]http://newsroom.toyota.co.jp/en/detail/4063130/, "Hybrid Model Global Sales Results," TOYOTA Global Newsroom, 07/24/2017.
[4]J. Ko, S. Ko, H. Son, B. Yoo, J. Cheon, and H. Kim, "Development of Brake System and Regenerative Braking Cooperative Control Algorithm for Automatic-Transmission-Based Hybrid Electric Vehicles," IEEE Transactions on Vehicular Technology, vol. 64, pp. 431-440, 2015.
[5]N. T. S. Board, "Washington DC: Special Investigation Report NTSB/SIR," Special Investigation Report-Highway Vehicle-and Infrastructure-based Technology for the Prevention of Rear-end Collisions[R]. , 01/01,2001.
[6]H. Her, W. Cho, and K. Yi, "Vehicle stability control using individual brake force based on tire force information," in 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2011, pp. 1205-1210.
[7]Toyota, "Prius Manual," 1997.
[8]G.-f. Li, Y. Lin, and H.-w. He, "Regenerative braking control strategy for electric vehicle [J]," Transactions of Beijing Institute of Technology, vol. 6, pp. 520-524, 2009.
[9]L. Hui and H. J. Wang Weida, "Modeling and Simulation of the Regenerative Braking System in a HEV Based on Fuzzy Control [J]," Automotive Engineering, vol. 34, pp. 51-56, 2012.
[10]F. Z. Ji, X. X. Zhou, and W. B. Zhu, "Coordinate control of electro-hydraulic hybrid brake of electric vehicles based on Carsim," in Applied Mechanics and Materials, 2014, pp. 1120-1125.
[11]L. T. Ling Zhao, et al, " Distribution Strategy for electric vehicle braking force based on fuzzy control," Journal of Machine Design and Research, 2014.
[12]B. Xiao, H. Lu, H. Wang, J. Ruan, and N. Zhang, "Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis," Energies, vol. 10, p. 1875, 2017.
[13]Y.-g. L. Lei Zhou, et al. Journal of Tsinghua University (Science & Technology), "Braking control of electric vehicles while coordinating regenerative and anti-lock brakes [J]," Tsinghua University (Science & Technology), 2009.
[14]L. Zhou, Y. Luo, K. LI, and X. LIAN, "Braking control of electric vehicles while coordinating regenerative and anti-lock brakes [J]," Journal of Tsinghua University (Science and Technology), vol. 5, p. 028, 2009.
[15]H. Fujimoto, "Regenerative Brake and Slip Angle Control of Electric Vehicle with In-wheel Motor and Active Front Steering," SAE Technical Paper, 2011.
[16]J. Hartley, A. Day, I. Campean, R. G. McLellan, and J. Richmond, "Braking System for a Full Electric Vehicle with Regenerative Braking," 2010.
[17]M. Roberts and T. Chhaya, "An Approach to the Safety Design and Development of a Brake-by-Wire Control System," 2011.
[18]A. Kusano, "Brake pressure control device for automotive vehicles," ed: Google Patents, 2001.
[19]Z. J. Y. C. Z. Jianwu, "Design and analysis of electro-mechanical hybrid anti-lock braking system for hybrid electric vehicle utilizing motor regenerative braking," Chinese Journal of Mechanical Engineering, vol. 22, p. 1, 2009.
[20]J. Meisel, "An Analytic Foundation for the Toyota Prius THS-II Powertrain with a Comparison to a Strong Parallel Hybrid-Electric Powertrain," 2006.
[21]C. Mansour and D. Clodic, "Dynamic modeling of the electro-mechanical configuration of the Toyota Hybrid System series/parallel power train," International Journal of Automotive Technology, vol. 13, p. 143, October 30 2011.
[22]陳道鴻, "行星齒輪動力分割系統之研究," 碩士, 機械工程系機械與機電工程碩士班, 明志科技大學, 新北市, 2014.
[23]https://mook.u-car.com.tw/article158.html, "Hybrid系統與EV系統的種類," U-car徹底研究節能趨勢, 2012.
[24]M. Boerboom, "Electric Vehicle Blended Braking maximizing energy recovery while maintaining vehicle stability and maneuverability," 2012.
[25]M. Ehsani, Y. Gao, S. Longo, and K. Ebrahimi, Modern electric, hybrid electric, and fuel cell vehicles: CRC press, 2018.
[26]B. Heißing and M. Ersoy, Chassis handbook: fundamentals, driving dynamics, components, mechatronics, perspectives: Springer Science & Business Media, 2010.
[27]J. Zhang, C. Lv, X. Yue, M. Qiu, J. Gou, and C. He, "Development of the Electrically-Controlled Regenerative Braking System for Electrified Passenger Vehicle," 2013.
[28]L. Chu, M. Shang, Y. Fang, J. Guo, and F. Zhou, "Braking force distribution strategy for HEV based on braking strength," in Measuring Technology and Mechatronics Automation (ICMTMA), 2010 International Conference on, 2010, pp. 759-764.
[29]F. Z. Ji, X. X. Zhou, and W. B. Zhu, "Coordinate Control of Electro-Hydraulic Hybrid Brake of Electric Vehicles Based on Carsim," Applied Mechanics and Materials, vol. 490-491, pp. 1120-1125, 2014.
[30]GouYanan, "Research on electric vehicle regenerative braking system and energy recovery," International Journal of Hybrid Information Technology, vol. 9, pp. 81-90, 2016.
[31]H. A. Yavasoglu, J. Shen, C. Shi, M. Gokasan, and A. Khaligh, "Power Split Control Strategy for an EV Powertrain With Two Propulsion Machines," IEEE Transactions on Transportation Electrification, vol. 1, pp. 382-390, 2015.
[32]Toyota. (2004). Case study: Toyota Hybrid Synergy Drive. Available: http://www.ae.pwr.wroc.pl/filez/20110606092430_HEV_Toyota.pdf
[33]J. Liu, "Modeling, Configuration and Control Optimization of Power-split Hybrid Vehicles," Degree of Doctor of Philosophy Department of Mechanical Engineering, 2007.
[34]T. J. BARLOW, S. Latham, I. McCrae, and P. Boulter, "A reference book of driving cycles for use in the measurement of road vehicle emissions," TRL Published Project Report, 2009.
[35]Toyota. (2005). Fuel Economy. Available: https://www.toyota.fr/new-cars/prius/index.json
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top