跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 05:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴畇茿
研究生(外文):Yun-Jhu Lai
論文名稱:應用於X/Ka頻段之互補式金氧半導體寬頻中性化功率放大器暨應用低阻抗二元功率結合技術與多蒂架構於X頻帶氮化鎵功率放大器之研製
論文名稱(外文):Implementations on X/Ka-band CMOS Wideband Unilateralized Power Amplifiers and X-band GaN Power Amplifiers with Low Impedance Binary Power Combining Technique and Doherty Architecture
指導教授:邱煥凱
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:132
中文關鍵詞:功率放大器寬頻中性化技術二元功率結合技術多蒂架構
外文關鍵詞:Power amplifierWideband unilateralized techniqueBinary power combining techniqueDoherty
相關次數:
  • 被引用被引用:1
  • 點閱點閱:367
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文採用tsmcTM 0.18-µm、tsmcTM 90-nm與WINTM 0.25-µm GaN製程設計五顆功率放大器,電路設計上選擇操作於X頻段與Ka頻段,藉由模擬不同製程之電晶體特性,選出最佳之電晶體大小與操作電流密度,結合變壓器形成寬頻匹配與運用多蒂特性使電路效率增加,最後量測電路特性以驗證電路設計之結果。
第一顆與第二顆皆為採用磁耦合變壓器於Ka頻段之90-nm CMOS寬頻功率放大器,此電路為兩級共源級結合中性化電路之設計,輸出與輸入採用磁耦合巴倫器,級間匹配則採用磁耦合變壓器增加電路頻寬,另外,於第二顆設計中加入了預匹配的考量,得以縮小晶片面積與增加頻寬,傳輸增益分別為17.43、14.5 dB,飽和輸出功率分別為14.73 、18.4 dBm,1-dB 增益壓縮點輸出功率分別為10.7、14.5 dBm,晶片面積分別為0.73 (1.41 × 0.405) mm2與0.67 (1.01 × 0.67) mm2。
第三顆使用0.18-m CMOS製程於X頻段之功率放大器,此功率放大器為採用中性化架構之兩級電路再結合A類並聯B類特性,增加電路的1-dB 增益壓縮點輸出功率與效率,輸出端與輸入端皆使用磁耦合巴倫器,級間匹配使用T型匹配增加電路頻寬,傳輸增益為20.1 dB,飽和輸出功率為20.1 dBm,1-dB 增益壓縮點輸出功率為18.4 dBm,加入A類並聯B類電晶體後,改善了最高輸出功率3.8 dBm與功率附加效率3.4%,晶片面積為1.78 (1.95 × 1.13) mm2。
第四顆為0.25-m GaN製程於X頻帶之二元功率結合功率放大器,電路採用兩級共源級架構,輸出端採用兩路並聯以增加輸出功率加上低阻抗結合器減少功率損耗,傳輸增益為16.35 dB,飽和輸出功率分別為33.2 dBm,1-dB 增益壓縮點輸出功率為24.5 dBm,晶片面積分別為3.47 (1.98 × 1.75) mm2。
第五顆為0.25-m GaN製程於X頻帶之多蒂功率放大器,輸出端採用T型匹配取代四分之一波長以縮小面積,輸入端則採用藍基耦合器,傳輸增益為11.8 dB,飽和輸出功率分別為35.9 dBm,功率回退附加效率為39.9 %,功率附加效率最高為41.5 %,晶片面積分別為3.03 (1.73 × 1.75) mm2。
The thesis developed five power amplifiers that were designed in tsmcTM 0.18-µm CMOS, tsmcTM 90-nm CMOS and WINTM 0.25-µm GaN for both X-band and Ka-band operations. The best transistor size and biasing current density of the used transistors were chosen by simulating in different processes. The wideband matching was realized by the magnetically coupling transformer and the enhanced efficiency was realized by using Doherty architecture. Finally, the circuit performance was verified by the measuring small and large signal parameters, such as S-parameters, output power, linearity and modulated signals, etc.,
The first power amplifier was fabricated in tsmcTM 0.18-µm CMOS technology for X-band operation. This two-stage power amplifier adopted the unilateralization technique which was constructed by a class A amplifier in parallel with class B one to increase the overall output 1-dB compression power (OP1dB) and power added efficiency (PAE). The wide operating bandwidth was achieved by using magnetically coupling Balun for the output matching and T-type matching for the inter-stage matching. The measurement results showed a small signal gain of 20.1 dB, the saturated output power (Psat) and OP1dB are 20.1 dBm and 18.4 dBm, respectively. The peak output power and PAE are improved by the amount of 3.8 dB and 3.4%, respectively, while adopted this composited power amplifier architecture. The chip area is 1.78 (1.95×1.13) mm2.
The second and third chips were fabricated in tsmcTM 90-nm CMOS technology for Ka-band operation. Two amplifiers were realized by using unilateralization technique in common-source topology. The input and output matching design followed the previous work and the inter-stage matching was realizes by magnetic transformer.
The third power amplifier applied a pre-matching design to minimize the chip size and increase the operating bandwidth. These power amplifiers displayed the gains of 17.43 dB and 14.5dB, respectively. The saturated output powers were measured to 14.73 dBm and 18.4 dBm. The OP1dB were 10.7dBm and 14.5 dBm, respectively. The chip areas are 0.73 (1.41×0.405) mm2 and 0.67 (1.01×0.67) mm2.
The fourth chip presents an X-band monolithic microwave integrated circuit (MMIC) binary-combining power amplifier in WINTM 0.25-µm GaN technology. The output of the two-stage CS power amplifiers combined two circuit paths to double the output power and the low impedance combiner reduced the power loss. The measured results exhibited a peak gain of 16.35 dB, a saturation output power of 33.2dBm and an OP1dB of 24.5dBm. The chip area is 3.47 (1.98×1.75) mm2. The fourth chip presents an X-band monolithic microwave integrated circuit (MMIC) binary-combining power amplifier in WINTM 0.25-µm GaN technology. The output of the two-stage CS power amplifiers combined two circuit paths to double the output power and the low impedance combiner reduced the power loss. The measured results exhibited a peak gain of 16.35 dB, a saturation output power of 33.2dBm and an OP1dB of 24.5dBm. The chip area is 3.47 (1.98×1.75) mm2.
The last power amplifier also was fabricated in WINTM 0.25-µm GaN technology. A Doherty power amplifier (DPA) adopted a T-type network for the output matching to reduce the chip size and a Lange-coupler for the input matching. The DPA achieved a peak gain of 11.8 dB, a saturation output power of 35.9 dBm, a PAE at 6-dB power back-off of 39.9% and a peak PAE 41.5%. The chip area is 3.03 (1.73×1.75) mm2.
摘要 I
Abstract III
誌謝 V
目錄 VII
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1- 研究動機 1
1-2 研究成果 1
1-3 章節簡介 2
第二章 應用磁耦合變壓器暨中性化技術寬頻功率放大器設計 3
2-1 研究現況 3
2-2 磁耦合變壓器簡介 3
2-3 單向化電路與中和化電路 6
2-3-1 電路簡介 7
2-3-2 增益與穩定度之改善 10
2-4 應用於Ka頻帶之差動中性化寬頻功率放大器 13
2-4-1 應用於Ka頻帶之差動中性化寬頻功率放大器設計 13
2-4-2 電路模擬與量測結果 25
2-4-3 結果比較與討論 34
2-5 應用於Ka 頻帶之中性化暨預匹配寬頻功率放大器 36
2-5-1 應用於Ka 頻帶之中性化暨預匹配寬頻功率放大器設計 36
2-5-2 電路模擬與量測結果 46
2-5-3結果比較與討論 53
第三章 應用於X頻段之改善增益壓縮暨中性化功率放大器 55
3-1 研究現況 55
3-2 改善電路效率架構 55
3-3 應用於X頻段之改善增益壓縮暨中性化功率放大器 57
3-3-1 應用於X頻段之改善增益壓縮暨中性化功率放大器設計 57
3-3-2 電路模擬與量測結果 65
3-3-3 結果比較與討論 73
第四章 應用X頻段之二元功率結合與多蒂氮化鎵功率放大器 76
4-1 研究現況 76
4-2 多蒂功率放大器簡介 76
4-3 應用X頻帶二元功率結合暨低阻抗匹配之氮化鎵功率放大器 79
4-3-1 應用X頻帶二元功率結合暨低阻抗匹配之氮化鎵功率放大器設計 79
4-3-2 電路模擬與量測結果 85
4-3-3 結果比較與討論 94
4-4 應用於X頻帶之氮化鎵多蒂功率放大器 96
4-4-1 應用於X頻帶之氮化鎵多蒂功率放大器設計 96
4-4-2 電路模擬結果 103
4-4-3 結果比較與討論 108
第五章 結論 109
5-1 結論 109
5-2 未來方向 110
參考文獻 111
[1] B. Park et al., "Highly Linear mm-Wave CMOS Power Amplifier," IEEE Trans. Microw. Theory Tech., vol. 64, no. 12, pp. 4535-4544, Dec. 2016.
[2] S. Shakib, H. C. Park, J. Dunworth, V. Aparin and K. Entesari, "20.6 A 28GHz efficient linear power amplifier for 5G phased arrays in 28nm bulk CMOS," 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 352-353.
[3] C. W. Kuo, H. K. Chiou and H. Y. Chung, "An 18 to 33 GHz Fully-Integrated Darlington Power Amplifier With Guanella-Type Transmission-Line Transformers in 0.18 m CMOS Technology," IEEE Microw. Wireless Compon. Lett., vol. 23, no. 12, pp. 668-670, Dec. 2013.
[4] C. H. Tsay, J. C. Kao, K. Y. Kao and K. Y. Lin, "A 27–34 GHz CMOS medium power amplifier with a flat power performance," in 2012 Asia Pacific Microwave Conference Proceedings, Kaohsiung, 2012, pp. 1-3
[5] J. Kim, W. Kim, H. Jeon, Y. Y. Huang, Y. Yoon, H. Kim, C. H. Lee, K.T. Kornegay, “A fully-integrated high-power linear CMOS power amplifier with a parallel-series combining transformer, ” IEEE J. Solid-State Circuits, vol.47, no.3, pp.599-614, Mar. 2012
[6] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[7] B.-H. Ku, S.-H. Back, and S. Hong, “A wideband transformer-coupld CMOS power amplifier for X-band multifunction chip,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 6, pp. 1599-1609, Jun. 2011.
[8] Yongwang Ding and R. Harjani, "A high-efficiency CMOS +22-dBm linear power amplifier," IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1895-1900, Sept. 2005.
[9] Lu, A. V. H. Pham, M. Shaw and C. Saint, "Linearization of CMOS Broadband Power Amplifiers Through Combined Multigated Transistors and Capacitance Compensation," IEEE Trans. Microw. Theory Tech., vol. 55, no. 11, pp. 2320-2328, Nov. 2007.
[10] P. S. Chi, Z. M. Tsai, J. L. Kuo, K. Y. Lin and H. Wang, "An X-band, 23.8-dBm fully integrated power amplifier with 25.8% PAE in 0.18-µm CMOS technology," in The 40th European Microwave Conference, Paris, 2010, pp. 1678-1681.
[11] Bon-Hyun Ku, Sang-Hyun Baek and Songcheol Hong, "A X-band CMOS power amplifier with on-chip transmission line transformers," 2008 IEEE RFIC Symp., Atlanta, GA, 2008, pp. 523-526.
[12] P P. C. Huang, K. Y. Lin and H. Wang, "A 4–17 GHz Darlington Cascode Broadband Medium Power Amplifier in 0.18- \mu m CMOS Technology," IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 43-45, Jan. 2010.
[13] R. Santhakumar, B. Thibeault, M. Higashiwaki, S. Keller, Z. Chen, U. K. Mishra, and R. A. York, “Two-Stage High-Gain High-Power Distributed Amplifier Using Dual-Gate GaN HEMTs,’’ IEEE Trans. Microw. Theory Tech., VOL. 59, NO. 8, Aug., pp.2059-2063, 2011.
[14] P. Dennler, F. van Raay, M. Seelmann-Eggebert, R. Quay, ¨ Senior Member, IEEE, and Oliver Ambacher , “Modeling and Realization of GaN-Based Dual-Gate HEMTs and HPA MMICs for Ku-Band Applications,” in IEEE MTT-S Int. Microwave Symp. Dig., 2011, pp. 1-4.
[15] A. Biondi, S. D'Angelo, F. Scappaviva, D. Resca and V. A. Monaco, "Compact GaN MMIC T/R module front-end for X-band pulsed radar," in 2016 11th European Microwave Integrated Circuits Conference (EuMIC), London, 2016, pp. 297-300.
[16] D. Kim, D. H. Lee, S. Sim, L. Jeon and S. Hong, "An X-Band Switchless Bidirectional GaN MMIC Amplifier for Phased Array Systems," IEEE Microw. Wireless Compon. Lett., vol. 24, no. 12, pp. 878-880, Dec. 2014.
[17] R. Quaglia, V. Camarchia, J. J. Moreno Rubio, M. Pirola and G. Ghione, "A 4-W Doherty Power Amplifier in GaN MMIC Technology for 15-GHz Applications," IEEE Microw. Wireless Compon. Lett., vol. 27, no. 4, pp. 365-367, April 2017.
[18] M. Coffey, P. MomenRoodaki, A. Zai and Z. Popovic, "A 4.2-W 10-GHz GaN MMIC Doherty Power Amplifier," 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), New Orleans, LA, 2015, pp. 1-4.
[19] D. Gustafsson, J. C. Cahuana, D. Kuylenstierna, I. Angelov and C. Fager, "A GaN MMIC Modified Doherty PA With Large Bandwidth and Reconfigurable Efficiency," IEEE Trans. Microw. Theory Tech., vol. 62, no. 12, pp. 3006-3016, Dec. 2014.
[20] D. Gustafsson, J. C. Cahuana, D. Kuylenstierna, I. Angelov, N. Rorsman and C. Fager, "A Wideband and Compact GaN MMIC Doherty Amplifier for Microwave Link Applications," IEEE Trans. Microw. Theory Tech., vol. 61, no. 2, pp. 922-930, Feb. 2013.
[21] 林厚安,「應用傳輸線型變壓器與自適應偏壓於C/X頻段之寬頻互補式金氧半導體功率放大器研製」,國立中央大學,碩士論文,民國104年。
[22] 林佳慧,「應用單向化預失真、傳輸線型變壓器與二元功率結合技術於C/X頻段之寬頻全積體功率放大器之研製」,國立中央大學,碩士論文,民國105年。
[23] 張凱彥,「應用傳輸線型變壓器於C/X頻段之CMOS功率放大器與Ku頻段之GaN功率放大器之研製」,國立中央大學,碩士論文,民國106年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 應用變壓器耦合與負偏壓技術於Ka頻段單刀雙擲開關器暨應用電容共振技術於X/Ka頻段III-V族開關器之研製
2. 互補式金氧半導體Ku頻段寬頻功率放大器與K頻段開關鍵控發射機暨X頻段氮化鎵瓦特級功率放大器之研製
3. 應用於C/X頻段之互補式金氧半導體低功耗寬頻接收機前端電路暨X頻段氮化鎵發射機之研製
4. 應用傳輸線型變壓器於C/X頻段之CMOS功率放大器與Ku頻段之GaN功率放大器之研製
5. C/X頻段低功耗寬頻接收機前端暨氮化鎵X頻段升頻式混頻器之研製
6. 應用負偏壓於Ka頻段互補式金氧半導體單刀雙擲切換器暨應用新型串並結構於X頻段氮化鎵切換器之研製
7. 應用於C/X頻段與802.11ac規格暨整合電流模態邏輯除頻器之低功耗寬頻IQ發射機
8. 應用於C頻段之互補式金氧半導體低相位雜訊C類壓控振盪器暨變壓器耦合四相位壓控振盪器暨利用F類壓控振盪器於C頻段之整數型鎖相迴路暨X頻段III-V族高功率振盪器之研製
9. X頻段互補式金氧半導體四相位壓控振盪器與整數型鎖相迴路暨氮化鎵高功率及高效率壓控振盪器之研製
10. 互補式金氧半導體C頻段F類與S頻段反F類壓控振盪器暨C頻段次取樣鎖相迴路之研製
11. 應用J類連續模式技術於Ka頻段砷化鎵與C頻段氮化鎵功率放大器之研製
12. 低功耗I/Q寬頻接收機前端電路應用於C/X頻帶
13. 應用於C/X頻段互補式金氧半導體之寬頻升/降混頻器與四分之一週期之IQ發射機之研製
14. 應用四階共振腔之互補式金氧半導體四相位雙頻振盪器暨使用轉導提升之5 GHz壓控振盪器整合除頻器與X-band 鎖相迴路之研製
15. 應用於n77 頻段之氮化鎵/砷化鎵積體被動元件多悌功率放大器暨使用B類連續技術於C/Ka頻帶氮化鎵/砷化鎵功率放大器之研製