跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/25 22:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何奕萱
研究生(外文):Ho, Yi-Hsuan
論文名稱:人工養殖鱉飼料研究Ⅰ. 浮性飼料對中華鱉種鱉養殖之研究Ⅱ. 飼料中纖維含量對幼鱉成長之影響
論文名稱(外文):Studies on soft-shelled turtle (Pelodiscus sinensis) dietsⅠ. Effect of expanded pellet diets on the culture of breeder soft-shelled turtlesⅡ. Effect of dietary crude fiber levels on the growth parameters of juvenile soft-shelled turtles
指導教授:謝豪晃謝豪晃引用關係黃承輝黃承輝引用關係
指導教授(外文):Hsieh, How-HongHuang, Chen-Huei
口試委員:林鈺鴻
口試委員(外文):Lin, Yu-Hung
口試日期:2018-01-12
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:動物科學與畜產系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:64
中文關鍵詞:粗纖維浮性飼料生長性能中華鱉
外文關鍵詞:Crude fiberExpanded pellet dietsGrowth parametersSoft-shell turtle
相關次數:
  • 被引用被引用:1
  • 點閱點閱:563
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
本研究進行兩個試驗,分別探討浮性飼料對中華鱉種鱉養殖之研究以及飼料中纖維含量對幼鱉成長之影響。試驗一探討種鱉浮性飼料,對鱉的飼養適口性、存活率、產蛋率及孵化率之影響,選用兩年半齡之中華鱉種鱉6000隻分6池,採2處理×3重複之試驗設計,每池1000隻。試驗場地為三和生技有限公司甲魚養殖場,2處理分別為對照組(濕性團料)以及處理組(浮性飼料)餵飼,經試驗期間10個月(2014/01/01-2014/10/31)後結果顯示,各組間適口性、產蛋率及孵化率均無顯著差異;餵飼浮性飼料組之存活率,顯著高於濕性團料之對照組(95.5 vs. 94.7%)。試驗二探討飼料中纖維含量對中華鱉幼鱉成長之影響,選用平均體重4.1g之中華鱉幼鱉,試驗飼料分別添加0(對照組)、4、8、12、16% 纖維素,共5組試驗組(F0, F4, F8, F12, F16),每組20重複,單隻個別飼養。飼料經實測之粗纖維含量,分別為3.88、7.35、11.72、15.46及19.42%,經過為期10週的餵飼試驗後,進行鱉體組成、血液參數、酵素活性等分析,結果顯示,各組之末重(finial weigh)、增重百分率(weight gain,WG)、蛋白質效率(protein efficiency ratio,PER)、飼料轉換率(feed conversion ratio,FCR)及存活率(survival rate)均無顯著差異;體組成、肝體比(HSI)其各組間亦無顯著差異;紅血球(RBC)、血紅素(Hb)各組間沒有顯著差異;血比容(Hct)以餵飼粗纖維19.42%的組別明顯高於餵飼粗纖維3.88、7.35%的組別;平均紅血球容積(MCV)、平均紅血球血紅素(MCH)及平均紅血球血紅素濃度(MCHC)各組間均無顯著差異;血清天門冬胺酸轉胺酶(AST)的活性以粗纖維含量3.88%的組別顯著高於7.35、11.72、15.46及19.42%的組別。大腸絨毛高度以餵飼粗纖維15.46%的組別顯著高於11.72和19.42%的組別。綜合上述試驗結果,顯示以浮性飼料餵飼中華鱉種鱉,並不會降低適口性、產蛋率及孵化率,可以提高種鱉存活率;提高飼料中粗纖維含量,不會影響幼鱉的生長性能、體組成、血液性狀及健康情形。
Two feeding trials were conducted to evaluate the effects of expanded pellet diets on the culture of breeder soft-shelled turtles and the effects of dietary crude fiber levels on the growth parameters of juvenile soft-shelled turtles. In experiment 1, to test the expanded pellet diets for breeder soft-shelled turtles on palatability, survival rate, egg production, and hatchability. Six thousand breeder soft-shelled turtles at about two and half years of age were randomly allotted into 2 treatments × 3 replicates experimental design with 1000 breeder soft-shelled turtles in each pond. The two treatment groups were fed diets with either control group (wet diets) or treatment group (expanded pellet diets) for 10 months. Results indicated that no significant differences in palatability, egg production and hatchability were observed between the two groups. The results of survival rate were significantly higher in the treatment group than the control group (95.5 vs. 94.7%). In experiment 2, to test the crude fiber levels of juvenile soft-shelled turtle diets on the growth parameters. Juvenile soft-shelled turtles of mean body weight 4.1g were fed diets supplemented with 5 levels of crude fiber (0, 4, 8, 12, 16%) for 10 weeks, and the actual crude fiber contents were measured as 3.88, 7.35, 11.72, 15.46 and 19.42%. Each diet was fed to 20 juvenile soft-shelled turtles in individual plastic cans. After 10 weeks of feeding trial, body composition, blood parameters, enzyme activity analysis of the juvenile turtles were conducted. The results indicated that no significant differences in weight gain (WG), protein efficiency ratio (PER), feed conversion ratio (FCR), survival rate, body composition, and hepatosomatic index (HSI) were observed between the testing groups. The results of blood parameters, red blood cell (RBC), hemoglobin (Hb) and mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) were not significantly different, however, the hematocrit (Hct) was significantly increased in the 19.42% crude fiber group than the 3.88 and 7.35% crude fiber groups. The results of serum aspartate aminotransferase (AST) activities was significantly increased in the 3.88% crude fiber group than the 7.35, 11.72, 15.46 and 19.42% crude fiber groups. The results of villus height of the large intestine was significantly increased in the 15.46% crude fiber group than the 11.72 and 19.42% crude fiber groups. The overall experimental results showed that the expanded pellet diets did not negatively impact the palatability, egg production and hatchability, however, increased survival rate of the breeder soft-shelled turtles. The crude fiber levels of juvenile soft-shelled turtles diets did not negatively impact on the growth parameters, body composition, blood analysis and healthy status of the juvenile soft-shelled turtles.
目錄
摘要.................................................I
Abstract...........................................III
謝誌.................................................V
目錄................................................VI
圖表目錄............................................IX
壹、前言.............................................1
貳、 文獻探討.....................................3
一、 中華鱉之分類與介紹............................3
二、 中華鱉養殖之現況..............................4
三、 飼料纖維之簡介................................5
(一) 纖維的定義..................................5
(二) 粗纖維與其他營養素的交互作用..................7
四、 纖維之特性....................................8
(一) 保水性......................................8
(二) 黏著度......................................8
(三) 陽離子交換力.................................8
(四) 膽酸(bile acid)的代謝........................8
五、 纖維對腸道的影響...............................9
(一) 對腸道組織的影響.............................9
(二) 對腸道營養的影響.............................9
(三) 對通過消化道所需時間的影響....................9
(四) 對腸道病變的影響.............................9
六、 纖維缺乏之症狀.................................9
七、 纖維的過多症..................................10
八、 水產飼料的種類與使用...........................10
參、材料與方法........................................13
一、 試驗一 浮性飼料對中華鱉種鱉養殖之研究...........13
(一) 試驗動物....................................13
(二) 飼料配製....................................13
(三) 飼養方法 ...................................15
(四) 試驗結束後樣品處理方式........................15
(五) 試驗分析項目.................................15
1. 飼料和體組成的一般成分分析....................15
2. 存活率......................................17
3. 產蛋率......................................18
4. 孵化率......................................18
(六) 統計分析.....................................18
二、 試驗二 飼料中纖維含量對幼鱉成長之影響............19
(一) 試驗動物 ....................................19
(二) 飼料配製 ....................................19
(三) 飼養方法 ....................................21
(四) 試驗結束後樣品處理方式........................21
(五) 試驗分析項目.................................21
1. 飼料和體組成一般成分分析......................21
2. 成長分析.....................................23
3. 血液分析.....................................25
4. 統計分析 ....................................26
5. 組織切片 ....................................26
6. 血清天門冬胺酸轉胺酶(AST)、丙胺酸轉胺酶(ALT)活
性測定.......................................27
肆、結果與討論..........................................28
一、 試驗一 浮性飼料對中華鱉種鱉養殖之研究.............28
(一) 飼料分析 ....................................28
(二) 適口性.......................................28
(三) 存活率.......................................31
(四) 產蛋率.......................................33
(五) 孵化率.......................................36
二、 試驗二 飼料中纖維含量對幼鱉成長之影響.............38
(一) 飼料分析......................................38
(二) 成長表現 .....................................40
(三) 體組成分析....................................42
(四) 血液分析 .....................................44
(五) 酵素活性分析..................................47
(六) 腸道絨毛觀察..................................49
伍、結論 .............................................51
陸、 參考文獻 .......................................53
柒、 附錄...........................................59
捌、 作者簡介.......................................64


圖表目錄
圖1 纖維素結構.........................................6
圖2 解剖前後幼鱉外觀及採樣.............................27
圖3 各池產蛋數量直條圖.................................34
圖4 種鱉浮性飼料組別與種鱉溼性團料的月產蛋總量...........35
圖5 中華鱉幼鱉小腸組織切片.............................50
圖6 中華鱉幼鱉小腸及大腸組織切片........................50
表1 浮性飼料對中華鱉種鱉養殖研究之試驗飼料配方...........14
表2 中華鱉飼料纖維含量研究之試驗飼料配方................20
表3 種鱉浮性飼料之一般成分分析.........................29
表4 市售鰻魚粉混和下雜魚調製濕性團料之一般成分分析.......30
表5 以不同飼料餵飼中華鱉種鱉10個月存活率的影響...........32
表6 浮性飼料與溼性團料孵化率結果........................37
表7 飼料中纖維含量試驗各組別飼料之一般成分分析...........39
表8 添加不同粗纖維含量飼料餵飼中華鱉幼鱉10週後之初重、末重、
增重百分率(WG)蛋白質利用率(PER)、飼料轉換率(FCR)、
存活率的影響......................................41
表9 添加不同粗纖維含量飼料餵飼中華鱉幼鱉10週後之體組成一般分
析、肝體比分析....................................43
表10 不同粗纖維含量飼料餵飼中華鱉幼鱉10週後之紅血球計數
(RBC)、血紅素濃度(Hb)及血球容積比(Hct).........45
表11 不同粗纖維含量飼料餵飼中華鱉幼鱉10週後之平均紅血球容積
(MCV)、平均紅血球血紅素(MCH)及平均紅血球血紅素濃度
(MCHC)..........................................46
表12 不同粗纖維含量飼料餵飼中華鱉幼鱉10週後之血清天門冬胺酸轉
胺酶(AST)活性、丙胺酸轉胺酶(ALT)活性............48
台灣漁業年報。2015。行政院農委會漁業署。
洪向志。1998。蛇與龜、鱉的飼養。五洲出版社,台北市。
鞠長增。1997。鱉的養殖與疾病防治,第27-32頁。河南科學技術出版社,中國鄭州。
徐壽山、黃立峰、沈佰林。1996。鰻鱉養殖實用新技術,第64-66頁。中國農業出版社,中國北京。
卓立超。2014。探討富含DHA之裂殖壺藻粉取代飼料中魚油對點帶石斑稚魚成長表現、脂肪酸組成及免疫反應之影響。碩士論文。國立屏東科技大學水產養殖系,屏東縣。
陳正修、董明澄、陳秀男。1997。中華鱉之養殖與管理。農委會漁業特刊第五十九號。
陳秋生、蘇澤紅、陳曉武。2005。中華鱉腸道黏膜免疫相關細胞的型態學研究。水生生物學報。29(6):654-658。
葉重光、周中英。1996。看圖養鱉技術。前程出版社,台灣。
王拓雄。2016。飼料中添加甲硫胺酸對中華鱉膽鹼需求之影響。碩士論文。國立嘉義大學水生生物科學系,嘉義縣。
Amirkolaie, A. K., J. I. Leenhouwers, J. A.J. Verreth, and J. W. Schrama. 2005. Type of dietary fibre (soluble versus insoluble) influences digestion, faeces characteristics and faecal waste production in Nile tilapia (Oreochromis niloticus L.). Aquac. Res. 36:1157-1166.
Andrews, J. W., J. W. Page, and M. W. Murray. 1977. Supplementation of a semipurified casein diet for catfish with free amino acids and gelatin. J. Nutr. 107: 1153-1158.
Anderson, J. S., A. J. Jackson, A. J. Matty, and B. S. Capper. 1984. Effects of dietary carbohydrate and fiber on the tilapia, Orechromis niloticus (Linn.). Aquaculture. 37:303-314.
Alliot, E., A. Pastoureaud, and J. Nedelec. 1979. Eitude de l’apport calorique et du rapport calorico-azote dans l’aliment du bar, Dicentrarchus labrax. Influence sur la croissancee t la composition corporelle. Page 241-251 in Halver J. E., Tiews K. (Eds.), Proc. World Symp. Finfish Nutrition and Fishfeed Technology, Hamburg, Germany. Heenemann Berlin.
Al-Ogaily, S. M. 1996. Effect of feeding different levels of cellulose on the growth performance and body composition of Oreochromis niloticus. Arab Gulf J. Sci. Res. 14(3):731-745.
A.O.A.C. (Association of Official Analytical Chemists). 1980. In: W. Horwitz (Editor), Official Methods of Analysis, 13th edition. Washington DC.
Beech, S. A., E. S. Batterham, and R. Elliott. 1990. Utilization of ileal digestible amino acids by growing pigs: threonine. Brit. J. Nutr. 65(3):381-390.
Beigi, F., J. G. Reinhold, B. Faraji, and P. Abadi. 1977. Effects of cellulose added to diets of low and high fiber content upon the metabolism of calcium, magnesium, zinc and phosphorus by man. J. Nutr. 107(4): 510-518.
Brodribb, J., R. E. Condon, V. Cowles, and J. J. DeCosse. 1980. Influence of dietary fiber on transit time, fecal composition, and myoelectrical activity of the primate right colon. Digest. Dis. Sci. 25(4): 260-266.
Bromley, G., and T. C. Adkins. 1984. The influence of cellulose tiller on feeding, growth and utilization of energy in rainbow trout, Salmo gairdneri Richardson. J. Fish Biol. 24(2):235-244.
Cantero, I., I. Abete, J. I. Monreal, J. A. Martinez, and M. A. Zulet. 2017. Fruit fiber consumption specifically improves liver health status in obese subjects under energy restriction. Nutrients 9(7):667-679.
Chen, L. P. and C. H. Huang. 2011. Effects of dietary β-carotene levels on growth and liver vitamin A concentrations of the soft-shelled turtle, Pelodiscus sinensis (Wiegmann). Aquac. Res. 42(12):1848-1854.
Cherbut, C., J. L. Barry, M. Wyers, and J. Delort-Laval. 1988. Effect of the nature of dietary fibre on transit time and faecal excretion in the growing pig. Anim. Feed Sci. Tech. 20(4):327-333.
Colin, W. 1993. The Science and Practice of Pig Production, Longman Group Limited, Essex, England.
Cummings, J. H. 1981. Dietary fibre. Brit. Med. Bull. 37:65-70.
Daubioul, C. A., Y. Horsmans, P. Lambert, E. Danse, and N. M. Delzenne. 2005. Effects of oligofructose on glucose and lipid metabolism in patients with nonalcoholic steatohepatitis: results of a pilot study. Eur. J. Clin. Nutr. 59(5): 723-726.
Dias, J., C. Huelvan, M. T. Dinis, and R. Metailler. 1998. Influence of dietary bulk agents (silica, cellulose and a natural zeolite) on protein digestibility, growth, feed intake and feed transit time in European seabass (Dicentrarchus zabrax) juveniles. Aquat. Living Resou. 11(4):219-226.
Du, H., D. L. van der A, H. C. Boshuizen, N. G. Forouhi, N. J. Wareham, J. Halkjaer, A. Tjønneland, K. Overvad, M. U. Jakobsen, H. Boeing, B. Buijsse, G. Masala, D. Palli, T. I. Sørensen, W. H. Saris, and E. J. Feskens. 2010. Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am. J. Clin. Nutr. 91(2):329-336.
Eastwood, M. A., J. A. Robertson, W. G. Brydon, and D. MacDonald. 1983. Measurement of water-holding properties of fibre and their faecal bulking ability in man. Brit. J. Nutr. 50(3):539-547.
Fynn-Aikins, K., S.S.O. Hung, W. Liu, and H. Li. 1992. Growth, lipogenesis and liver composition of juvenile white sturgeon fed different levels of D-glucose. Aquaculture 105(1):61-72.
Godara, R., A. P. Kaur, and C. M. Bhat. 1981. Effect of cellulose incorporation in a low fiber diet on fecal excretion and serum levels of calcium, phosphorus, and iron in adolescent girls. Am. J. Clin. Nutr. 34(6):1083-1086.
Hansen, J. Ø., and T. Storebakken. 2007. Effects of dietary cellulose level on pellet quality and nutrient digestibilities in rainbow trout (Oncorhynchus mykiss). Aquaculture 272(1):458-465.
Hilton, J.W., J.I. Atkinson, and S.J. Slinger. 1983. Effect of increased dietary fiber on the growth of rainbow trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci. 40(1):81- 85.
Huang, C. H., Lin, W. Y. 1999. Effect of replacing fish meal with fermented soybean meal in diets on growth and body composition of juvenile soft-shelled turtle, Trionyx sinensis. J. Fish. Soc. Taiwan 26:225-232.
Ighwela, K. A., A. B. Ahmad, and A. B. Abol-Munafi. 2015. Effect of dietary α-cellulose levels on the growth parameters of nile tilapia oreochromis niloticus fingerlings. World Academy of Science, Engineering and Technology International J. Anim. Vet. Sci. 9(8):953-956.
Jørgensen, H., X. Q. Zhao, K. E. B. Knudsen, and B. O. Eggum. 1996. The influence of dietary fibre source and level on the development of the gastrointestinal tract, digestibility and energy metabolism in broiler chickens. Brit. J. Nutr. 75(3):379-395.
Kass, M. L., P. J. Soest, W. G. Pond, B. Lewis, and R. E. McDowell. 1980a. Utilisation of dietary fibre from alfalfa by growing swine. 1. Apparent digestibility of diet components in specific segments of the gastrointestinal tract. J. Anim. Sci. 50(1):175-191.
Kass, M. L., P. J. Soest, W. G. Pond, B. Lewis, and R. E. McDowell. 1980b. Utilisation of dietary fibre from alfalfa by growing swine. 2. Volatile fatty acid concentrations in and disappearance from the gastrointestinal tract. J. Anim. Sci. 50(1):192-197.
Kelsay, J. L., K. M. Behall, and E. S. Prather. 1978. Effect of fiber from fruits and vegetables on metabolic responses of human subjects I. Bowel transit time, number of defecations, fecal weight, urinary excretions of energy and nitrogen and apparent digestibilities of energy, nitrogen, and fat. Am. J. Clin. Nutr. 31(7):1149-1153.
Kornegay, E. T., and C. R. Risley. 1996. Nutrient digestibilities of a corn-soybean meal diet as influenced by Bacillus products fed to finishing swine. J. Anim. Sci. 74(4):799-805.
Kraugerud, O. F., M. Penn, T. Storebakken, S. Refstie, Å. Krogdahl, and B. Svihus. 2007. Nutrient digestibilities and gut function in Atlantic salmon (Salmo salar) fed diets with cellulose or non-starch polysaccharides from soy. Aquaculture 273(1):96-107.
Lee, S. M., K. D. Kim, and S. P. Lall. 2003. Utilization of glucose, maltose, dextrin and cellulose by juvenile flounder (Paralichthys olivaceus). Aquaculture 221(1):427-438.
Lekva, A., A. C. Hansen, G. Rosenlund, Ø. Karlsen, and G. Hemre. 2010. Energy dilution with α-cellulose in diets for Atlantic cod (Gadus morhua L.) juveniles - Effects on growth, feed intake, liver size and digestibility of nutrients. Aquaculture 300(1):169-175
Longland, A. C., and A. G. Low. 1989. Digestion of diets containing molassed or plain sugar-beet pulp by growing pigs. Anim. Feed Sci. Tech. 23(1-3):67-78.
Low, A. G. 1985. Role of dietary fibre in pig diets. Page 87-112 in Recent Developments in Pig Nutrition. London, UK.
Newton, G. L., O. M. Hale, and C. O. Plank. 1983. Effect of wheat bran in practical diets on mineral absorption by pigs at low ages. Can. J. Anim. Sci. 63(2):399-468.
NRC (National Research Council), 1993. Nutrient Requirements of Fish. National Acad. Press, Washington, DC. 114.
Olsen, R.E., A. C. Hansen, R. Myklebust, T.W. Mayhew, G. Rosenlund, O.T. Eroldoğan, G.I. Hemre, and Ø. Karlsen. 2007. Effects of total replacement of fish meal with plant proteins in diets for Atlantic cod (Gadus morhua L.) – Health aspects. Aquaculture. 272(1):612-624.
Partridge, I. G. 1978. Studies on digestion and absorption in the intestines of growing pigs: 3. Net movements of mineral nutrients in the digestive tract. Brit. J. Nutr. 39(3):527-537.
Potkins, Z. V., T. L. Lawrence, and J. R. Thomlinson. 1992. Dietary fibre in the diet of the growing pig: effects on apparent digestibility and resultant implications for its use in reducing the incidence of oesophagogastric parakeratosis. Res. Vet. Sci. 52(1):15-21.
Pyle, G. G., J. W. Rajotte, and P. Couture. 2005. Effects of industrial metals on wild fish populations along a metal contamination gradient. Ecotox. Environ. Safe. 61(3):287-312.
Robinson, K. L., W. E. Coey, and G. S. Burnett. 1954. The use of antibiotics in the food of fattening pigs. J. Sci. Food Agr. 5(11):541-549.
Roediger, W. E. 1994. Famine, fiber, fatty acids, and failed colonic absorption: does fiber fermentation ameliorate diarrhea? J. Parenter. Enteral Nutr. 18(1):4-8.
Rosenlund, G., Ø. Karlsen, K. Tveit, A. Mangor-Jensen, and G. I. Hemre. 2004. Effect of feed composition and feeding frequency on growth, feed utilization and nutrient retention in juvenile Atlantic cod, Gadus morhua L. Aquacult. Nutr. 10(6):371-378.
Schulze, H., P. van Leeuwen, , M. W. Verstegen, J. Huisman, W. B. Souffrant, and F. Ahrens. 1994. Effect of level of dietary neutral detergent fiber on ileal apparent digestibility and ileal nitrogen losses in pigs. J. Anim. Sci. 72(9):2362-2368.
Shi, H.T., J. F. Parham, Z. Y. Fan, M. L. Hong, and F. Yin. 2008. Evidence for the massive scale of turtle farming in China. Oryx. 42(1):147-150.
Trowell, H., D. A. T. Southgate, T. M. S. Wolever, A. R. Leeds, M. A. Gassull, and D. J. A. Jenkins. 1976. Dietary fiber redefined. Lancet. 1:967.
Turano, M.J., D.A. Davis, and C.R. Arnold. 2002. Optimization of growout diets for red drum, Sciaenops ocellatus. Aquacult. Nutr. 8(2):95-101.
Wiesmann, D., and E. Pfeffer. 1986. Influence of indigestible carbohydrates on the efficiency of utilization of dietary energy and protein in growing rainbow trout (Salmo gairdnerii, R). Arch. Anim. Nutr. 36:1145-1149.
Zelber-Sagi, S., V. Ratziu, , and R. Oren. 2011. Nutrition and physical activity in NAFLD: an overview of the epidemiological evidence. World. J. Gastroenterol. 17(23):3377-3389.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top