[1]C. Peterson and M. Ringne’r, “Analyzing Tumor Gene Expression Profiles,” Artificial Intelligence in Medicine, vol. 28, no. 1, pp. 59-74, May 2003.
[2]汪昭緯,應用分群技術偵測信用卡異常交易之研究,國立中央大學,資訊管理研究所,碩士論文,2002。[3]MacKay David, “Chapter 20. An Example Inference Task: Clustering,” Information Theory, Inference and Learning Algorithms, Cambridge University Press, pp.284–292, 2003.
[4]T. Velmurugan and T. Santhanam, “Computational Complexity between K-Means and K-Medoids Clustering Algorithms for Normal and Uniform Distributions of Data Points,” Journal of Computer Science, vol 6, no 3, pp. 363-368, 2010.
[5]Raymond T. Ng and Jiawei Han, “CLARANS: a method for clustering objects for spatial data mining,” IEEE Transactions on Knowledge and Data Engineering, vol. 14, no. 5, pp. 1003-1016, 2002.
[6]Sudipto Guha, Rajeev Rastogi and Kyuseok Shim, “Cure: an efficient clustering algorithm for large databases,” Information Systems, vol. 26, no. 1, pp. 35-58, 2001.
[7]Sudipto Guha, Rajeev Rastogi and Kyuseok Shim, “Rock: A robust clustering algorithm for categorical attributes,” Information Systems, vol. 25, no. 5, pp. 345-366, 2000.
[8]George Karypis, Eui-Hong Han and Vipin Kumar, “Chameleon: Hierarchical Clustering Using Dynamic Modeling,” IEEE Computer, vol. 32, no. 8, pp. 68-75, Aug. 1999.
[9]M. Tekbir and S. Albayrak, “Recursive-Partitioned DBSCAN,” 2010 IEEE 18th Signal Processing and Communications Applications Conference (SIU), pp. 113-116, 2010.
[10]Jun He and Weimin Pan, “A DENCLUE based approach to neuro-fuzzy system modeling,” 2010 2nd International Conference on Advanced Computer Control (ICACC), vol. 4, pp. 42-46, 2010.
[11]M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: Ordering Points to Identify the Clustering Structure,” Proc. of the 1999 International Conference on Management of Data, pp. 49-60, 1999.
[12]W. Wang, J. Yang and R. Muntz, “STING: A Statistical Information Grid Approach to Spatial Data Mining,” Proc. of the 23th VLDB Conference, pp. 186-195, 1997.
[13]Xiaoli Li and Min Luo, “An Improved WaveCluster Algorithm Based on ICA,” Wireless Communications, Networking and Mobile Computing, 2009. WiCom ''09. 5th International Conference on, pp. 1-5, 2009.
[14]S.K. Bethi, V.V. Phoha and Y.B. Reddy, "CLIQUE clustering approach to detect denial-of-service attacks," Information Assurance Workshop, 2004. Proceedings from the Fifth Annual IEEE SMC, pp. 447-448, 2004.
[15]D. Fisher, "Improving inference through conceptual clustering," Proceedings of the 1987 AAAI Conferences, AAAI Conference, Seattle Washington, pp. 461–465, 1987.
[16]J Gennari, P. Langley and D. Fisher, “Models of Incremental Concept Formation,” Artificial Intelligence, vol. 40, pp. 11-61, 1989.
[17]J.A.F. Costa and Hujun Yin, "Gradient-based SOM clustering and visualisation methods," The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1-8, 2010.
[18]L. Billard and E. Diday, “From the statistics of data to the statistics of knowledge: Symbolic data analysis,” Journal of the American Statistical Association, vol 98, pp. 470-487, 2003.
[19]H. H. Bock and E. Diday, Analysis of symbolic data: Exploratory methods for extracting statistical information from complex data, Springer-Verlag, 2000.
[20]Jin-Tsong Jeng, Chen-Chia Chuang and C. W. Tao, “Interval competitive agglomeration clustering algorithm,” Expert Systems with Applications, vol. 37, pp. 6567-6578, 2010.
[21]K. C. Gowda and E. Diday, “Symbolic clustering using a new dissimilarity measure,” Pattern Recognition, vol. 24, pp. 567-578, 1991.
[22]K. C. Gowda and E. Diday, “Symbolic clustering using a new similarity measure,” IEEE Transactions on Systems Man Cybernetic, vol. 22, pp. 368-378, 1992.
[23]K. C. Gowda and T. R. Ravi, “Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity,” Pattern Recognition, vol. 28, pp. 1277-1282, 1995.
[24]K. C. Gowda and T. R. Ravi, “Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity,” Pattern Recognition Letter, vol. 16, pp. 647-652, 1995.
[25]F. A. T. De Carvalho, R. M. C. R. Souza, M. Chavent, and Y. Lechevallier, “Adaptive Hausdorff distances and dynamic clustering of symbolic data,” Pattern Recognition Letter, vol. 27, pp. 167-179, 2006.
[26]F. A. T. De Carvalho, “Fuzzy c-means clustering methods for symbolic interval data,” Pattern Recognition Letter, vol. 28, pp.423-437, 2007.
[27]Nello Cristianini and John Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2000.
[28]J. C. Bezdek, “A convergence theorem for the fuzzy ISODATA clustering algorithms,” IEEE Trans. on Pattern Analysis and Machine Intelligence, pp. 1-8, 1980.
[29]R. Krishnapuram and J. M. Keller, “A possibilistic approach to clustering,” IEEE Transactions on Fuzzy Systems, vol. 1, pp. 98-110, 1993.
[30]N. R. Pal, K. Pal and J. C. Bezdek, “Amixed c-means clustering model,” Proc. Of 1997 IEEE Int. Conf. on Fuzzy Systems, vol. 1, pp. 11-21, 1997.
[31]N. R. Pal, K. Pal, J. M Keller and J. C. Bezdek, “A possibilistic fuzzy c-means clustering algorithm,” IEEE Transactions on Fuzzy Systems, vol. 13, pp. 517-530, 2005.
[32]Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Dordrecht, The Netherlands: Kluwer, 1991.
[33]P. Maji, and S. K. Pal, “Rough Set Based Generalized Fuzzy C-means Algorithm and Quantitative Indices,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 37, pp. 1529-1540, 2007.
[34]维基百科,“Android” [Online]. Available:http://zh.wikipedia.org/wiki/Android.
[35]Open Handset Alliance, “Android Overview” [Online] Available:http://www.openhandsetalliance.com/android_overview.html.
[36]维基百科,“iOS” [Online]. Available: http://zh.wikipedia.org/wiki/IOS.
[37]维基百科,“Symbian_OS” [Online]. Available: http://zh.wikipedia.org/wiki/Symbian_OS.
[38]廖柄火侖,支持向量機於智慧家庭之應用,國立虎尾科技大學,資訊工程研究所,碩士論文,2010。
[39]廖彥博,胡硯,馬騏,Windows Mobile 平台應用與開發,文魁資訊,2007。
[40]Jin-Tsong Jeng, Chen-Chia Chuang, Chih-Cheng Tseng and Chang-Jung Juan "Robust interval competitive agglomeration clustering algorithm with outliers," International Journal of Fuzzy Systems, vol. 12, no. 3, pp. 227-236, 2010.
[41]Shun-Feng Su, Chen-Chia Chuang, C. W. Tao, Jin-Tsong Jeng, Chih-Ching Hsiao, “Radial basis function networks with linear interval regression weights for symbolic interval data,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, no. 1, pp. 69-80, 2012.