|
Blaabjerg, F., & Ma, K. (2013). Future on power electronics for wind turbine systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1(3), 139-152. Lu, B., Li, Y., Wu, X., & Yang, Z. (2009). A review of recent advances in wind turbine condition monitoring and fault diagnosis. In 2009 IEEE Power Electronics and Machines in Wind Applications IEEE Press, pp. 1-7. Milborrow, D. (2006). Operation and maintenance costs compared and revealed. Wind-stats Newsletter, 19, 1-3. Hatch, C. (2004). Improved wind turbine condition monitoring using acceleration enveloping. Orbit, 61, 58-61. Márquez, F. P. G., Tobias, A. M., Pérez, J. M. P., & Papaelias, M. (2012). Condition monitoring of wind turbines: Techniques and methods. Renewable Energy, 46, 169-178. McMillan, D., & Ault, G. W. (2007). Quantification of condition monitoring benefit for offshore wind turbines. Wind Engineering, 31(4), 267-285. Amirat, Y., Benbouzid, M. E. H., Al-Ahmar, E., Bensaker, B., & Turri, S. (2009). A brief status on condition monitoring and fault diagnosis in wind energy conversion systems. Renewable and Sustainable Energy Reviews, 13(9), 2629-2636. Lu, Q. F., Cao, Z. T., & Ritchie, E. (2004). Model of stator inter-turn short circuit fault in doubly-fed induction generators for wind turbine. In Proc. of 2004 IEEE 35th Annual Power Electronics Specialists Conference (PESC 04), Vol. 2, pp. 932-937. Popa, L. M., Jensen, B. B., Ritchie, E., & Boldea, I. (2003). Condition monitoring of wind generators. In Proc. of 38th IAS Annual Meeting. Conference Record of the Industry Applications Conference, Vol. 3, pp. 1839-1846. Yang, W., Tavner, P. J., Crabtree, C. J., Feng, Y., & Qiu, Y. (2014). Wind turbine condition monitoring: technical and commercial challenges. Wind Energy, 17(5), 673-693. Mrad, N., Foote, P., Giurgiutiu, V., & Pinsonnault, J. (2013). Condition-based mainte-nance. International Journal of Aerospace Engineering, 2013. Chen, B., Matthews, P. C., & Tavner, P. J. (2015). Automated on-line fault prognosis for wind turbine pitch systems using supervisory control and data acquisition. IET Renewable Power Generation, 9(5), 503-513. Touret, T., Changenet, C., Ville, F., Lalmi, M., & Becquerelle, S. (2018). On the use of temperature for online condition monitoring of geared systems–A review. Mechanical Systems and Signal Processing, 101, 197-210. Zhao, R., Wang, D., Yan, R., Mao, K., Shen, F., & Wang, J. (2018). Machine health monitoring using local feature-based gated recurrent unit networks. IEEE Transactions on Industrial Electronics, 65(2), 1539-1548. Yang, H. H., Huang, M. L., Lai, C. M., & Jin, J. R. (2018). An approach combining data mining and control charts-based model for fault detection in wind turbines. Renewable Energy, 115, 808-816. Prisacaru, A., Gromala, P. J., Jeronimo, M. B., Han, B., & Zhang, G. Q. (2017). Prognostics and health monitoring of electronic system: A review. In 2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, Press, pp. 1-11. Hu, Y., Baraldi, P., Di Maio, F., & Zio, E. (2017). A Systematic Semi-Supervised Self-adaptable Fault Diagnostics approach in an evolving environment. Mechanical Systems and Signal Processing, 88, 413-427. Moorthy, C. B., Agrawal, A., & Deshmukh, M. K. (2015). Artificial Intelligence Techniques for Wind Power Prediction: A Case Study. Indian Journal of Science and Technology, 8(25). Liu, X., Li, M., Qin, S. Y., Ma, X. J., & Wang, W. Z. (2016). A predictive fault diag-nose method of wind turbine based on k-means clustering and neural networks. Journal of Internet Technology, 17(7), 1521-1528. Khosravi, A., Machado, L., & Nunes, R. O. (2018). Time-series prediction of wind speed using machine learning algorithms: A case study Osorio wind farm, Brazil. Applied Energy, 224, 550-566. Sheela, K. G., & Deepa, S. N. (2013). Neural network based hybrid computing model for wind speed prediction. Neurocomputing, 122, 425-429. Leahy, K., Gallagher, C., O’Donovan, P., Bruton, K., & O’Sullivan, D. (2018). A robust prescriptive framework and performance metric for diagnosing and predicting wind turbine faults based on SCADA and alarms data with a case study. Energies, 11(7), 1738. Wilkinson, M. R., Spinato, F., & Tavner, P. J. (2007). Condition monitoring of generators & other subassemblies in wind turbine drive trains. In Proc. of IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED 2007), pp. 388-392). Wang, Y., & Infield, D. (2013). Supervisory control and data acquisition data-based non-linear state estimation technique for wind turbine gearbox condition monitoring. IET Renewable Power Generation, 7(4), 350-358. Jahromi, A., Piercy, R., Cress, S., Service, J., & Fan, W. (2009). An approach to power transformer asset management using health index. IEEE Electrical Insulation Magazine, 25(2), 20-34. Yu, S., Abraham, Z., Wang, H., Shah, M., Wei, Y., & Príncipe, J. C. (2019). Concept Drift Detection and Adaptation with Hierarchical Hypothesis Testing. Journal of the Franklin Institute. Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition letters, 31(8), 651-666. Park, H. S., & Jun, C. H. (2009). A simple and fast algorithm for K-medoids clustering. Expert systems with applications, 36(2), 3336-3341. Nayak, J., Naik, B., & Behera, H. S. (2015). Fuzzy C-means (FCM) clustering algorithm: a decade review from 2000 to 2014. In Computational intelligence in data mining-volume 2 (pp. 133-149). Springer, New Delhi. Bouguettaya, A., Yu, Q., Liu, X., Zhou, X., & Song, A. (2015). Efficient agglomerative hierarchical clustering. Expert Systems with Applications, 42(5), 2785-2797. Sasirekha, K., & Baby, P. (2013). Agglomerative hierarchical clustering algorithm-a. International Journal of Scientific and Research Publications, 83, 83. Murthy, V. S. V. S., Vamsidhar, E., Kumar, J. S., & Rao, P. S. (2010). Content-based image retrieval using Hierarchical and K-means clustering techniques. International Journal of Engineering Science and Technology, 2(3), 209-212. Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning with drift detection. In Proc. of Brazilian Symposium on Artificial Intelligence, pp. 286-295. Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464-1480. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672-2680). Carpenter, G. A., & Grossberg, S. (2010). Adaptive resonance theory (pp. 22-35). Springer US. Jiang, Y., Chen, K. J., & Zhou, Z. H. (2003). SOM based image segmentation. In International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing(pp. 640-643). Springer, Berlin, Heidelberg. Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE Transactions on neural networks,11(3), 586-600. Hussin, M. F., Kamel, M. S., & Nagi, M. H. (2004). An efficient two-level SOMART document clustering through dimensionality reduction. In International Conference on Neural Information Processing (pp. 158-165). Springer, Berlin, Heidelberg. Zhang, Z., Verma, A., & Kusiak, A. (2012). Fault analysis and condition monitoring of the wind turbine gearbox. IEEE Transactions on Energy Conversion, 27(2), 526-535. Li, Z., Jiang, R., Ma, Z., & Liu, Y. (2015). Fault diagnosis of wind turbine gearbox based on kernel fuzzy c-means clustering. In Proc. of International Conference on Renewable Power Generation (RPG 2015), IET Press. Gibert, K., Marti-Puig, P., Cusidó, J., & Solé-Casals, J. (2018). Identifying Health Status of Wind Turbines by Using Self Organizing Maps and Interpretation-Oriented Post-Processing Tools. Energies, 11(4), 723. Yin, S., Wang, G., & Karimi, H. R. (2014). Data-driven design of robust fault detection system for wind turbines. Mechatronics, 24(4), 298-306. Dao, P. B. (2018). Condition monitoring of wind turbines based on cointegration analysis of gearbox and generator temperature data. Diagnostyka, 19(1), 63-71. Schlechtingen, M., & Santos, I. F. (2011). Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection. Mechanical Systems and Signal Processing, 25(5), 1849-1875. Zhang, Y., Zheng, H., Liu, J., Zhao, J., & Sun, P. (2018). An anomaly identification model for wind turbine state parameters. Journal of Cleaner Production, 195, 1214-1227. Dong, L., Wang, L., Khahro, S. F., Gao, S., & Liao, X. (2016). Wind power day-ahead prediction with cluster analysis of NWP. Renewable and Sustainable Energy Reviews, 60, 1206-1212. Wang, S., Schlobach, S., & Klein, M. (2011). Concept drift and how to identify it. Web Semantics: Science, Services and Agents on the World Wide Web, 9(3), 247-265. Klinkenberg, R., & Joachims, T. (2000). Detecting Concept Drift with Support Vector Machines. In ICML (pp. 487-494). Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning with drift detection. In Proc. of Brazilian Symposium on Artificial Intelligence, pp. 286-295. Baena-García, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavaldà, R., & Mo-rales-Bueno, R. (2006). Early drift detection method. In Proc. of 4th International Workshop on Knowledge Discovery from Data Streams, vol. 6, pp. 77-86. Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35-62. Huang, K. Y., Chang, W. R., & Yen, H. T. (1990). Self-organizing neural network for picking seismic horizons. In SEG Technical Program Expanded Abstracts 1990, pp. 313-316. Society of Exploration Geophysicists. Smith, K. A., & Ng, A. (2003). Web page clustering using a self-organizing map of user navigation patterns. Decision Support Systems, 35(2), 245-256. Guo, P., Infield, D., & Yang, X. (2012). Wind turbine generator condition-monitoring using temperature trend analysis. IEEE Transactions on sustainable energy, 3(1), 124-133. Good, P. (2013). Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses. Springer Science & Business Media. Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I., & Tygar, J. D. (2011). Adversarial machine learning. In Proceedings of 4th ACM workshop on Security and artificial intelligence, ACM Press, pp. 43-58.
|