|
1.Ghosh, A., Talukdar, S., Ghosh, K., Colorimetric and fluorescence recognition of tryptophan and histidine using phthalaldehyde based probe: experimental, computational, cell imaging and fish tissue analysis. RSC ADV. 4, 55286-55289, 2014. 2.國家環境毒物研究中心. 氰化物. Available: http://nehrc.nhri.org.tw/toxic/toxfaq_detail.php?id=12. 3.Aksu, Z., Calik, A., Dursun, A.Y., Demircan, Z., Biosorption of iron (III)–cyanide complex anions to Rhizopus arrhizus: application of adsorption isotherms. Process Biochem. 34, 483-491, 1999. 4.Shang, L., Zhang, L., Dong, S., Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots. Analyst. 134, 107-113, 2009. 5.Chung, S.Y., Nam, S.W., Lim, J., Park, S., Yoon, J., A highly selective cyanide sensing in water via fluorescence change and its application to in vivo imaging. Chem. Commun. 20, 2866-2868, 2009. 6.Kirubaharan, C.J., Kalpana, D., Lee, Y.S., Kim, A.R., Yoo, D.J., Nahm, K.S., Kumar, G.G., Biomediated Silver Nanoparticles for the Highly Selective Copper(II) Ion Sensor Applications. IND ENG CHEM RES. 51, 7441-7446, 2012. 7.Park, G.J., Hwang, I.H., Song, E.J., Kim, H., Kim, C., A colorimetric and fluorescent sensor for sequential detection of copper ion and cyanide. Tetrahedron. 70, 2822-2828, 2014. 8.Na, Y.J., Choi, Y.W., Yun, J.Y., Park, K.M., Chang, P.S., Kim, C., Dual-channel detection of Cu2+ and F− with a simple Schiff-based colorimetric and fluorescent sensor. SAA. 136, 1649-1657, 2015. 9.臺中榮民總醫院遺傳諮詢中心. Menke's Disease.; Available: https://www.vghtc.gov.tw/GipOpenWeb/wSite/ct?xItem=56680&ctNode=25735&mp=5938. 10.Kumar, R., Münstedt, H., Silver ion release from antimicrobial polyamide/silver composites. Biomater. 26, 2081-2088, 2005. 11.Shamsipur, M., Alizadeh, K., Hosseini, M., Caltagirone, C., Lippolis, V., A selective optode membrane for silver ion based on fluorescence quenching of the dansylamidopropyl pendant arm derivative of 1-aza-4,7,10- trithiacyclododecane. Sens. actuators. B Chem. 113, 892-899, 2006. 12.Andrews, N.C., Disorders of Iron Metabolism. N Engl J Med. 341, 1986-1995, 1999. 13.Gupta, V.K., Jain, A.K., Agarwal, S., Maheshwari, G., An iron(III) ion-selective sensor based on a μ-bis(tridentate) ligand. Talanta. 71, 1964-1968, 2007. 14.Weinberg, E.D., The role of iron in cancer. Eur J Cancer Prev. 5, 19-36, 1996. 15.Khun, K., Ibupoto, Z.H., Ali, S.M.U., Chey, C.O., Nur, O., Willander, M., Iron Ion Sensor Based on Functionalized ZnO Nanorods. Electroanalysis. 24, 521-528, 2012. 16.劉士榮, 宋益銘, 吳淑褓, 銅離子及鐵離子螢光化學感測分子之設計與合成及於活體細胞顯影之應用. 化學. 71, 279-284, 2013. 17.Kaper, T., Looger, L.L., Takanaga, H., Platten, M., Steinman, L., Frommer, W.B., Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. PLoS Biol. 5, 257, 2007. 18.Palego, L., Betti, L., Rossi, A., Giannaccini, G. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. J Amino Acids, 2016. 19.Kumbhar, H.S., Yadav, U.N., Gadilohar, B.L., Shankarling, G.S. A highly selective fluorescent chemosensor based on thio-β-enaminone analog with a turn-on response for Cu(II) in aqueous media. Sens. actuators. B Chem. 203, 174-180, 2014. 20.Lee, D.Y., Singh, N., Satyender, A., Jang, D.O., An azo dye-coupled tripodal chromogenic sensor for cyanide. Tetrahedron Lett. 52, 6919-6922, 2011. 21.Quinlan, E., Matthews, S.E., Gunnlaugsson, T., Colorimetric recognition of anions using preorganized tetra-amidourea derived calix[4]arene sensors. J Org Chem. 72, 7497-7503, 2007. 22.Xu, Z., Pan, J., Spring, D.R., Cui, J., Yoon, J. Ratiometric fluorescent and colorimetric sensors for Cu2+ based on 4,5-disubstituted-1,8-naphthalimide and sensing cyanide via Cu2+ displacement approach. Tetrahedron. 66, 1678-1683, 2010. 23.Xu, Z., Chen, X., Kim, H. N., Yoon, J. Sensors for the optical detection of cyanide ion. Chem Soc Rev. 39, 127-137, 2010. 24.Valeur, B., Leray, I., Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 205, 3-40, 2000. 25.陳群霖, 含吡咯-2-碳醯胺衍生物對陰離子之顏色及螢光感應行為之研究. 131, 2006. 26.莊博仁, Zhuang, B.R., 以蒽為基礎的螢光離子感測器:合成及測試. 2012. 27.Martínez-Máñez, R., Sancenón, F., Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chem. Rev. 103, 4419-4476, 2003. 28.Jeon, H., Lee, S., Li, Y., Park, S., Yoon, J. Conjugated polydiacetylenes bearing quaternary ammonium groups as a dual colorimetric and fluorescent sensor for ATP. J. Mater. Chem. 22, 3795, 2012. 29.Berger, M., Schmidtchen, F.P., Schmidtchen, Zwitterionic Guanidinium Compounds Serve as Electroneutral Anion Hosts. J. Am. Chem. Soc. 121, 9986-9993, 1999. 30.Boerrigter, H., Grave, L., Nissink, J.W.M., Chrisstoffels, L. A., van der Maas, J.H., Verboom, W., Reinhoudt, D.N., (Thio) urea Resorcinarene Cavitands. Complexation and Membrane Transport of Halide Anions. J. Org. Chem. 63, 4174-4180, 1998. 31.Miyaji, H., Sato, W., Sessler, J.L. Naked‐Eye Detection of Anions in Dichloromethane: Colorimetric Anion Sensors Based on Calix pyrrole. Angew. Chem. 112, 1847-1850, 2000. 32.López, M.V., Bermejo, M.R., Vázquez, M.E., Taglietti, A., Zaragoza, G., Pedrido, R., Martínez-Calvo, M., Sulfonamide-imines as selective fluorescent chemosensors for the fluoride anion. Org Biomol Chem, 8, 357-362, 2010. 33.Kumar, N., Milton, M.D., Singh, J.D., Upreti, S., Butcher, R.J., Design, synthesis, and structural aspects of chalcogen-substituted pyridine dicarboxamide donors and their reactions. Tetrahedron Lett. 47, 885-889,2006. 34.Sundararaman, A., Victor, M., Varughese, R., Jäkle, F. A Family of Main-Chain Polymeric Lewis Acids: Synthesis and Fluorescent Sensing Properties of Boron-Modified Polythiophenes. J. Am. Chem. Soc. 127, 13748-13749, 2005. 35.Dujols, V., Ford, F., Czarnik, A.W. A Long-Wavelength Fluorescent Chemodosimeter Selective for Cu (II) Ion in Water. J. Am. Chem. Soc. 119, 7386-7387, 1997. 36.Cheng, Y.Y.F., Recent Progress on Fluorescent Chemosensors and Chemodosimeters for Ion Recognition. 江汉大学学报(自然科学版). 42, 13-22, 2014. 37.Lee, M.H., Kim, J.S., Sessler, J.L., Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev. 44, 4185-91, 2015. 38.Jung, H.S., Verwilst, P., Kim, W.Y., Kim, J.S. Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem Soc Rev. 45, 1242-1256, 2016. 39.Gimeno, N., Li, X., Durrant, J. R., Vilar, R. Cyanide sensing with organic dyes: studies in solution and on nanostructured Al2O3 surfaces. Chem. 14, 3006-3012, 2008. 40.Lee, D.H., Lee, H.Y., & Hong, J.I. Anion sensor based on the indoaniline–thiourea system. Tetrahedron Lett. 43, 7273-7276, 2002. 41.Boyle, E.M., Comby, S., Molloy, J.K., Gunnlaugsson, T. Thiourea Derived Tröger’s Bases as Molecular Cleft Receptors and Colorimetric Sensors for Anions. J. Org. Chem. 78, 8312-8319, 2013. 42.Lin, Y.S., Zheng, J.X., Tsui, Y.K., & Yen, Y.P. Colorimetric detection of cyanide with phenyl thiourea derivatives. Spectrochim Acta A Mol Biomol Spectrosc. 79, 1552-1558, 2011. 43.Gunnlaugsson, T., Leonard, J.P., Murray, N.S. Highly Selective Colorimetric Naked-Eye Cu (II) Detection Using an Azobenzene Chemosensor. Org. Lett. 6, 1557-1560, 2004. 44.Tatay, S., Gaviña, P., Coronado, E., Palomares, E. Optical Mercury Sensing Using a Benzothiazolium Hemicyanine Dye. Org. Lett. 8, 3857-3860, 2006. 45.Udhayakumari, D., Velmathi, S., Venkatesan, P., Wu, S.P. A pyrene-linked thiourea as a chemosensor for cations and simple fluorescent sensor for picric acid. Analytical Methods. 7, 1161-1166, 2015. 46.Ge, J.Z., Zou, Y., Yan, Y.H., Lin, S., Zhao, X.F., Cao, Q. Y. A new ferrocene–anthracene dyad for dual-signaling sensing of Cu (II) and Hg (II). J. Photochem. Photobiol., A:chem. 315, 67-75, 2016. 47.Weng, C.J., Chang, C.H., Peng, C.W., Chen, S.W., Yeh, J.M., Hsu, C.L., Wei, Y. Advanced Anticorrosive Coatings Prepared from the Mimicked Xanthosoma Sagittifolium-leaf-like Electroactive Epoxy with Synergistic Effects of Superhydrophobicity and Redox Catalytic Capability. Chem. Mater. 23, 2075-2083, 2011. 48.Shiraishi, Y., Sumiya, S., Kohno, Y., Hirai, T. A rhodamine−cyclen conjugate as a highly sensitive and selective fluorescent chemosensor for Hg (II). J. Org. Chem. 73, 8571-8574, 2008. 49.Niu, H.T., Su, D., Jiang, X., Yang, W., Yin, Z., He, J., Cheng, J.P. A simple yet highly selective colorimetric sensor for cyanide anion in an aqueous environment. Org Biomol Chem. 6, 3038-3040, 2008. 50.Hill, Z.D. MacCarthy, P. Novel approach to Job's method: An undergraduate experiment. J. Chem. Educ. 63, 162, 1986. 51.Connors, K.A., Binding constants: the measurement of molecular complex stability. Wiley New York. 1987. 52.Benesi, H.A., Hildebrand, J.H.J. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J. Am. Chem. Soc. 71, 2703-2707, 1949. 53.Miller, J.C., Miller, J.N., Statistics and Chemometrics in Analytical Chemistry. 1988. 54.Pangannaya, S., Purayil, N.P., Dabhi, S., Mankad, V., Jha, P.K., Shinde, S., Trivedi, D.R. Spectral and DFT studies of anion bound organic receptors: Time dependent studies and logic gate applications. Beilstein J Org. Chem. 13, 222, 2017. 55.Meredith, N.A., Quinn, C., Cate, D.M., Reilly, T.H., Volckens, J., Henry, C.S. based analytical devices for environmental analysis. Analyst. 141, 1874-1887, 2016. 56.Xiong, J.J., Huang, P.C., Zhang, C.Y., Wu, F.Y. Colorimetric detection of Cu2+ in aqueous solution and on the test kit by 4-aminoantipyrine derivatives. Sens. actuators. B Chem. 226, 30-36, 2016. 57.Makrlík, E., Vaňura, P., Budka, J., Selucký, P. Stability constants of the Li+, Na+, H3O+, NH4+, Ag+, and K+ complexes of the cone conformer of tetraethyl p-tert-butyltetrathiacalix arene tetraacetate in nitrobenzene saturated with water. Monatsh. Chem.141, 31-33, 2010. 58.劉高登, 鍋爐水垢清洗廢水之回收及處理. 崑山科技大學環境工程研究所學位論文, 1-80, 2010. 59.Pagliari, S., Corradini, R., Galaverna, G., Sforza, S., Dossena, A., Marchelli, R. Enantioselective sensing of amino acids by copper (II) complexes of phenylalanine-based fluorescent β-cyclodextrins. Tetrahedron Lett. 41, 3691-3695, 2000.
|