跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/21 15:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳奕劭
研究生(外文):CHEN, YI-SHAO
論文名稱:苯胺寡聚物系列化學感測器在陰離子、陽離子、胺基酸檢測之應用
論文名稱(外文):Application of Aniline Oligomer Based Chemical Sensors for Anion, Cation and Amino Acid Sensing
指導教授:張棋榕
指導教授(外文):CHANG, CHI-JUNG
口試委員:陳建光黃智峯林彥谷
口試委員(外文):CHEN, JEM-KUNHUANG, CHIH-FENGLIN YAN-GU
口試日期:2018-07-09
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:103
中文關鍵詞:苯胺三聚體硫脲基陰離子感測陽離子感測胺基酸感測雙重感測酸鹼值肉眼辨識試紙化學感測材料
外文關鍵詞:aniline trimerthioureaanions detectioncations detectionamino acids detectiondual sensingpH effectnaked-eye detectionsolid test kitchemical sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究合成一系列由苯胺三聚體合成之化學感測器。含有硫脲基鍵結位置的Colorimetric dual responsive sensor (CDRS) 化學感測器能夠同時感測CN-陰離子和pH。含有光學活性中心之硫脲基鍵結位置的Cation-Amino acid sensor (CAS) 化學感測器能夠感測陽離子與胺基酸。CDRS可以在含20%水量之DMSO混合溶劑中能夠辨識CN-,顏色變化從橙色至紫色。CAS在含50%含水量的DMSO溶劑 (中性) 中能夠感測到Ag+, Cu2+, Fe3+,加入Ag+顏色從淡紫色變成棕色、加入Cu2+變成紫色與加入Fe3+變成紫紅色,CAS亦能在10%含水量DMSO溶劑中能夠辨識到L-Tryptophan產生藍色螢光,其他胺基酸則無反應。這些變化可由目視觀察。透過紫外-可見光光譜儀來進行CN¯對於CDRS的定量分析以及Ag+, Cu2+, Fe3+對於CAS的定量分析。可以藉由1H NMR滴定實驗來觀察感測材料與待測離子兩者之間的氫鍵作用力與去質子化作用。在其他競爭性離子之存在下CDRS與CAS仍然能夠感測到待測離子,說明化學感測材料對於特定離子具有高度的選擇性。CDRS與CAS在不同酸鹼值之環境亦有顏色上之變化。此外,我們也將CDRS和CAS塗布在濾紙上製備成方便攜帶與檢測之試紙,提供低成本且能夠以肉眼直接辨識生活中有毒離子存在的檢測方法。本研究亦評估化學感測材料CDRS對陰離子以及化學感測材料CAS對於不同陽離子的鍵結常數與感測極限。
We’ve successfully synthesized a series of efficient chemical sensors, including two aniline trimer based colorimetric chemical sensors. Colorimetric dual responsive sensor (CDRS) with thiourea binding site can sense CN- anion and changes in pH. Cation-Amino acid sensor (CAS) with chiral thiourea binding site can sense Ag+, Cu2+, Fe3+ and L- Tryptophan. Upon addition of CN- to CDRS in 30% aqueous DMSO, the colorimetric response of solution of CDRS showed a color change from orange to purple. For CAS, upon addition of Ag+, Cu2+, and Fe3+ to it in 50% aqueous DMSO respectively, the colorimetric response of solution of CAS exhibited a color change from light purple to brown, purple, and fuchsia, respectively. Moreover, upon addition of L-Tryptophan to CAS in 10% aqueous DMSO, it showed blue fluorescence. However, no response was observed by adding other amino acid. The results can be recognized by naked eye.
The quantative analysis of CN- by CDRS, and quantative analysis of Ag+, Cu2+, Fe3+ by CAS can be achieved by UV-Vis. Spectrometer. The interaction between receptor and analyte ions was realized by 1H NMR spectroscopic titration. CDRS and CAS have shown appreciable selectivity in the presence of multiple ions. In different pH environments, CDRS and CAS also have differnt color change. The CN- anion in aqueous solution can be recognized by solid test kits of CDRS. The Ag+, Cu2+, Fe3+ cations in aqueous solution can be recognized by solid test kits of CAS. The binding constants, detection limits of different receptor toward various ions were also studied.

摘要 i
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1前言 1
1.1.1 氰化物 1
1.1.2 銅離子 2
1.1.3 銀離子 2
1.1.4 鐵離子 2
1.1.5 L-色胺酸 3
1.2研究動機與目的 4
第二章 理論原理與文獻回顧 6
2.1化學感測材料簡介 6
2.1.1 辨識單元 6
2.1.2 信號傳遞單元 7
2.2化學感測材料的設計原理 8
2.2.1鍵結位置-信號單元法 (Binding Site-Signaling Subunit Approach) 8
2.2.2置換法 (Displacement Approach) 9
2.2.3 Chemodosimeter法 (Chemodosimeter Approach) 10
2.3螢光化學感測材料之機制 12
2.3.1光誘導電子轉移 (PET) 12
2.3.2電子能量轉移 (EET) 13
2.3.3分子內電荷轉移 (ICT) 14
2.3.4單體-激態複合物形成 (Monomer-Excimer Formation) 15
2.4化學感測材料之文獻回顧 17
2.4.1苯胺衍生物為基底的陰離子感測材料 17
2.4.2苯胺衍生物為基底的陽離子感測材料 24
第三章 實驗部分 29
3.1實驗流程圖 29
3.1.1 化學感測材料CDRS實驗流程圖 29
3.1.2 化學感測材料CAS實驗流程圖 29
3.2檢測儀器 30
3.3實驗儀器與藥品溶劑 32
3.3.1實驗藥品 32
3.3.2實驗溶劑 35
3.4合成與檢測 36
3.4.1 Aniline trimer合成 (AT) 36
3.4.2 Colorimetric dual responsive sensor合成 (CDRS) 37
3.4.3 Cation-Amino acid sensor合成 (CAS) 39
3.5化學感測材料與離子溶液之配製 41
3.5.1 CDRS與陰離子溶液之配置 41
3.5.2 CAS與陽離子溶液之配置 41
3.5.3 CAS與銅離子與胺基酸離子溶液之配置 41
3.6化學感測材料與陰離子的感測機制之實驗方法 42
3.7 Benesi-Hildebrand Method 43
3.8感測極限 45
3.9 Job’s Method 46
第四章 實驗結果與討論 47
4.1 硫脲系統CDRS之特性 47
4.1.1化學感測材料CDRS對陰離子之顏色變化計量測試 47
4.1.2化學感測材料CDRS對陰離子的感測機制 54
4.1.3化學感測材料CDRS在多重陰離子中之感測能力 56
4.1.4試紙製備與應用 57
4.1.5化學感測材料CDRS之pH值感測 59
4.1.6化學感測材料CDRS之雙重感測 ( pH值、陰離子) 61
4.2光學硫脲系統CAS之特性 63
4.2.1化學感測材料CAS對陽離子之顏色變化計量測試 63
4.2.2化學感測材料CAS對陽離子之感測機制 75
4.2.3化學感測材料CAS在多重陽離子中之感測能力 77
4.2.4試紙製備與應用 78
4.2.5化學感測材料CAS之pH值感測 79
4.2.6化學感測材料CAS之雙重感測特性 ( pH值、陽離子) 81
4.2.7化學感測材料CAS之雙重選擇性感測(陽離子、胺基酸) 84
第五章 結論 86
參考文獻 88

1.Ghosh, A., Talukdar, S., Ghosh, K., Colorimetric and fluorescence recognition of tryptophan and histidine using phthalaldehyde based probe: experimental, computational, cell imaging and fish tissue analysis. RSC ADV. 4, 55286-55289, 2014.
2.國家環境毒物研究中心. 氰化物. Available: http://nehrc.nhri.org.tw/toxic/toxfaq_detail.php?id=12.
3.Aksu, Z., Calik, A., Dursun, A.Y., Demircan, Z., Biosorption of iron (III)–cyanide complex anions to Rhizopus arrhizus: application of adsorption isotherms. Process Biochem. 34, 483-491, 1999.
4.Shang, L., Zhang, L., Dong, S., Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots. Analyst. 134, 107-113, 2009.
5.Chung, S.Y., Nam, S.W., Lim, J., Park, S., Yoon, J., A highly selective cyanide sensing in water via fluorescence change and its application to in vivo imaging. Chem. Commun. 20, 2866-2868, 2009.
6.Kirubaharan, C.J., Kalpana, D., Lee, Y.S., Kim, A.R., Yoo, D.J., Nahm, K.S., Kumar, G.G., Biomediated Silver Nanoparticles for the Highly Selective Copper(II) Ion Sensor Applications. IND ENG CHEM RES. 51, 7441-7446, 2012.
7.Park, G.J., Hwang, I.H., Song, E.J., Kim, H., Kim, C., A colorimetric and fluorescent sensor for sequential detection of copper ion and cyanide. Tetrahedron. 70, 2822-2828, 2014.
8.Na, Y.J., Choi, Y.W., Yun, J.Y., Park, K.M., Chang, P.S., Kim, C., Dual-channel detection of Cu2+ and F− with a simple Schiff-based colorimetric and fluorescent sensor. SAA. 136, 1649-1657, 2015.
9.臺中榮民總醫院遺傳諮詢中心. Menke's Disease.; Available: https://www.vghtc.gov.tw/GipOpenWeb/wSite/ct?xItem=56680&ctNode=25735&mp=5938.
10.Kumar, R., Münstedt, H., Silver ion release from antimicrobial polyamide/silver composites. Biomater. 26, 2081-2088, 2005.
11.Shamsipur, M., Alizadeh, K., Hosseini, M., Caltagirone, C., Lippolis, V., A selective optode membrane for silver ion based on fluorescence quenching of the dansylamidopropyl pendant arm derivative of 1-aza-4,7,10- trithiacyclododecane. Sens. actuators. B Chem. 113, 892-899, 2006.
12.Andrews, N.C., Disorders of Iron Metabolism. N Engl J Med. 341, 1986-1995, 1999.
13.Gupta, V.K., Jain, A.K., Agarwal, S., Maheshwari, G., An iron(III) ion-selective sensor based on a μ-bis(tridentate) ligand. Talanta. 71, 1964-1968, 2007.
14.Weinberg, E.D., The role of iron in cancer. Eur J Cancer Prev. 5, 19-36, 1996.
15.Khun, K., Ibupoto, Z.H., Ali, S.M.U., Chey, C.O., Nur, O., Willander, M., Iron Ion Sensor Based on Functionalized ZnO Nanorods. Electroanalysis. 24, 521-528, 2012.
16.劉士榮, 宋益銘, 吳淑褓, 銅離子及鐵離子螢光化學感測分子之設計與合成及於活體細胞顯影之應用. 化學. 71, 279-284, 2013.
17.Kaper, T., Looger, L.L., Takanaga, H., Platten, M., Steinman, L., Frommer, W.B., Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. PLoS Biol. 5, 257, 2007.
18.Palego, L., Betti, L., Rossi, A., Giannaccini, G. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. J Amino Acids, 2016.
19.Kumbhar, H.S., Yadav, U.N., Gadilohar, B.L., Shankarling, G.S. A highly selective fluorescent chemosensor based on thio-β-enaminone analog with a turn-on response for Cu(II) in aqueous media. Sens. actuators. B Chem. 203, 174-180, 2014.
20.Lee, D.Y., Singh, N., Satyender, A., Jang, D.O., An azo dye-coupled tripodal chromogenic sensor for cyanide. Tetrahedron Lett. 52, 6919-6922, 2011.
21.Quinlan, E., Matthews, S.E., Gunnlaugsson, T., Colorimetric recognition of anions using preorganized tetra-amidourea derived calix[4]arene sensors. J Org Chem. 72, 7497-7503, 2007.
22.Xu, Z., Pan, J., Spring, D.R., Cui, J., Yoon, J. Ratiometric fluorescent and colorimetric sensors for Cu2+ based on 4,5-disubstituted-1,8-naphthalimide and sensing cyanide via Cu2+ displacement approach. Tetrahedron. 66, 1678-1683, 2010.
23.Xu, Z., Chen, X., Kim, H. N., Yoon, J. Sensors for the optical detection of cyanide ion. Chem Soc Rev. 39, 127-137, 2010.
24.Valeur, B., Leray, I., Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 205, 3-40, 2000.
25.陳群霖, 含吡咯-2-碳醯胺衍生物對陰離子之顏色及螢光感應行為之研究. 131, 2006.
26.莊博仁, Zhuang, B.R., 以蒽為基礎的螢光離子感測器:合成及測試. 2012.
27.Martínez-Máñez, R., Sancenón, F., Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chem. Rev. 103, 4419-4476, 2003.
28.Jeon, H., Lee, S., Li, Y., Park, S., Yoon, J. Conjugated polydiacetylenes bearing quaternary ammonium groups as a dual colorimetric and fluorescent sensor for ATP. J. Mater. Chem. 22, 3795, 2012.
29.Berger, M., Schmidtchen, F.P., Schmidtchen, Zwitterionic Guanidinium Compounds Serve as Electroneutral Anion Hosts. J. Am. Chem. Soc. 121, 9986-9993, 1999.
30.Boerrigter, H., Grave, L., Nissink, J.W.M., Chrisstoffels, L. A., van der Maas, J.H., Verboom, W., Reinhoudt, D.N., (Thio) urea Resorcinarene Cavitands. Complexation and Membrane Transport of Halide Anions. J. Org. Chem. 63, 4174-4180, 1998.
31.Miyaji, H., Sato, W., Sessler, J.L. Naked‐Eye Detection of Anions in Dichloromethane: Colorimetric Anion Sensors Based on Calix pyrrole. Angew. Chem. 112, 1847-1850, 2000.
32.López, M.V., Bermejo, M.R., Vázquez, M.E., Taglietti, A., Zaragoza, G., Pedrido, R., Martínez-Calvo, M., Sulfonamide-imines as selective fluorescent chemosensors for the fluoride anion. Org Biomol Chem, 8, 357-362, 2010.
33.Kumar, N., Milton, M.D., Singh, J.D., Upreti, S., Butcher, R.J., Design, synthesis, and structural aspects of chalcogen-substituted pyridine dicarboxamide donors and their reactions. Tetrahedron Lett. 47, 885-889,2006.
34.Sundararaman, A., Victor, M., Varughese, R., Jäkle, F. A Family of Main-Chain Polymeric Lewis Acids:  Synthesis and Fluorescent Sensing Properties of Boron-Modified Polythiophenes. J. Am. Chem. Soc. 127, 13748-13749, 2005.
35.Dujols, V., Ford, F., Czarnik, A.W. A Long-Wavelength Fluorescent Chemodosimeter Selective for Cu (II) Ion in Water. J. Am. Chem. Soc. 119, 7386-7387, 1997.
36.Cheng, Y.Y.F., Recent Progress on Fluorescent Chemosensors and Chemodosimeters for Ion Recognition. 江汉大学学报(自然科学版). 42, 13-22, 2014.
37.Lee, M.H., Kim, J.S., Sessler, J.L., Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev. 44, 4185-91, 2015.
38.Jung, H.S., Verwilst, P., Kim, W.Y., Kim, J.S. Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem Soc Rev. 45, 1242-1256, 2016.
39.Gimeno, N., Li, X., Durrant, J. R., Vilar, R. Cyanide sensing with organic dyes: studies in solution and on nanostructured Al2O3 surfaces. Chem. 14, 3006-3012, 2008.
40.Lee, D.H., Lee, H.Y., & Hong, J.I. Anion sensor based on the indoaniline–thiourea system. Tetrahedron Lett. 43, 7273-7276, 2002.
41.Boyle, E.M., Comby, S., Molloy, J.K., Gunnlaugsson, T. Thiourea Derived Tröger’s Bases as Molecular Cleft Receptors and Colorimetric Sensors for Anions. J. Org. Chem. 78, 8312-8319, 2013.
42.Lin, Y.S., Zheng, J.X., Tsui, Y.K., & Yen, Y.P. Colorimetric detection of cyanide with phenyl thiourea derivatives. Spectrochim Acta A Mol Biomol Spectrosc. 79, 1552-1558, 2011.
43.Gunnlaugsson, T., Leonard, J.P., Murray, N.S. Highly Selective Colorimetric Naked-Eye Cu (II) Detection Using an Azobenzene Chemosensor. Org. Lett. 6, 1557-1560, 2004.
44.Tatay, S., Gaviña, P., Coronado, E., Palomares, E. Optical Mercury Sensing Using a Benzothiazolium Hemicyanine Dye. Org. Lett. 8, 3857-3860, 2006.
45.Udhayakumari, D., Velmathi, S., Venkatesan, P., Wu, S.P. A pyrene-linked thiourea as a chemosensor for cations and simple fluorescent sensor for picric acid. Analytical Methods. 7, 1161-1166, 2015.
46.Ge, J.Z., Zou, Y., Yan, Y.H., Lin, S., Zhao, X.F., Cao, Q. Y. A new ferrocene–anthracene dyad for dual-signaling sensing of Cu (II) and Hg (II). J. Photochem. Photobiol., A:chem. 315, 67-75, 2016.
47.Weng, C.J., Chang, C.H., Peng, C.W., Chen, S.W., Yeh, J.M., Hsu, C.L., Wei, Y. Advanced Anticorrosive Coatings Prepared from the Mimicked Xanthosoma Sagittifolium-leaf-like Electroactive Epoxy with Synergistic Effects of Superhydrophobicity and Redox Catalytic Capability. Chem. Mater. 23, 2075-2083, 2011.
48.Shiraishi, Y., Sumiya, S., Kohno, Y., Hirai, T. A rhodamine−cyclen conjugate as a highly sensitive and selective fluorescent chemosensor for Hg (II). J. Org. Chem. 73, 8571-8574, 2008.
49.Niu, H.T., Su, D., Jiang, X., Yang, W., Yin, Z., He, J., Cheng, J.P. A simple yet highly selective colorimetric sensor for cyanide anion in an aqueous environment. Org Biomol Chem. 6, 3038-3040, 2008.
50.Hill, Z.D. MacCarthy, P. Novel approach to Job's method: An undergraduate experiment. J. Chem. Educ. 63, 162, 1986.
51.Connors, K.A., Binding constants: the measurement of molecular complex stability. Wiley New York. 1987.
52.Benesi, H.A., Hildebrand, J.H.J. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J. Am. Chem. Soc. 71, 2703-2707, 1949.
53.Miller, J.C., Miller, J.N., Statistics and Chemometrics in Analytical Chemistry. 1988.
54.Pangannaya, S., Purayil, N.P., Dabhi, S., Mankad, V., Jha, P.K., Shinde, S., Trivedi, D.R. Spectral and DFT studies of anion bound organic receptors: Time dependent studies and logic gate applications. Beilstein J Org. Chem. 13, 222, 2017.
55.Meredith, N.A., Quinn, C., Cate, D.M., Reilly, T.H., Volckens, J., Henry, C.S. based analytical devices for environmental analysis. Analyst. 141, 1874-1887, 2016.
56.Xiong, J.J., Huang, P.C., Zhang, C.Y., Wu, F.Y. Colorimetric detection of Cu2+ in aqueous solution and on the test kit by 4-aminoantipyrine derivatives. Sens. actuators. B Chem. 226, 30-36, 2016.
57.Makrlík, E., Vaňura, P., Budka, J., Selucký, P. Stability constants of the Li+, Na+, H3O+, NH4+, Ag+, and K+ complexes of the cone conformer of tetraethyl p-tert-butyltetrathiacalix arene tetraacetate in nitrobenzene saturated with water. Monatsh. Chem.141, 31-33, 2010.
58.劉高登, 鍋爐水垢清洗廢水之回收及處理. 崑山科技大學環境工程研究所學位論文, 1-80, 2010.
59.Pagliari, S., Corradini, R., Galaverna, G., Sforza, S., Dossena, A., Marchelli, R. Enantioselective sensing of amino acids by copper (II) complexes of phenylalanine-based fluorescent β-cyclodextrins. Tetrahedron Lett. 41, 3691-3695, 2000.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top