|
1. Muddineti OS, Ghosh B, Biswas S: Current trends in using polymer coated gold nanoparticles for cancer therapy. Int J Pharm 2015, 484:252-267. 2. Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R: Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano letters 2008, 8:4593-4596. 3. Fujita K, Ishitobi S, Hamada K, Smith NI, Taguchi A, Inouye Y, Kawata S: Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell. Journal of biomedical optics 2009, 14:024038-024038-024037. 4. England CG, Huang JS, James KT, Zhang G, Gobin AM, Frieboes HB: Detection of Phosphatidylcholine-Coated Gold Nanoparticles in Orthotopic Pancreatic Adenocarcinoma using Hyperspectral Imaging. PLoS ONE 2015, 10:e0129172. 5. Singh M, Harris-Birtill DC, Zhou Y, Gallina ME, Cass AE, Hanna GB, Elson DS: Application of gold nanorods for photothermal therapy in Ex Vivo human oesophagogastric adenocarcinoma. Journal of biomedical nanotechnology 2016, 12:481-490. 6. Rejinold NS, Jayakumar R, Kim YC: Radio frequency responsive nano-biomaterials for cancer therapy. J Control Release 2015, 204:85-97. 7. Mariam J, Sivakami S, Dongre PM: Albumin corona on nanoparticles - a strategic approach in drug delivery. Drug Deliv 2015:1-9. 8. Dykman L, Khlebtsov N: Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 2012, 41:2256-2282. 9. Ahmed K, Tabuchi Y, Kondo T: Hyperthermia: an effective strategy to induce apoptosis in cancer cells. Apoptosis 2015, 20:1411-1419. 10. Hegyi G, Szigeti GP, Szasz A: Hyperthermia versus Oncothermia: Cellular Effects in Complementary Cancer Therapy. Evid Based Complement Alternat Med 2013, 2013:672873. 11. Chatterjee DK, Diagaradjane P, Krishnan S: Nanoparticle-mediated hyperthermia in cancer therapy. Therapeutic delivery 2011, 2:1001-1014. 12. Zhou H, Wu W, Tang X, Zhou J, Shen Y: Effect of hyperthermic intrathoracic chemotherapy (HITHOC) on the malignant pleural effusion: A systematic review and meta-analysis. Medicine 2017, 96. 13. van der Zee J, González D, van Rhoon GC, van Dijk JD, van Putten WL, Hart AA: Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. The Lancet 2000, 355:1119-1125. 14. Ohguri T, Imada H, Yahara K, Morioka T, Nakano K, Terashima H, Korogi Y: Radiotherapy With 8-MHz Radiofrequency-Capacitive Regional Hyperthermia for Stage III Non–Small-Cell Lung Cancer: The Radiofrequency-Output Power Correlates With the Intraesophageal Temperature and Clinical Outcomes. International Journal of Radiation Oncology*Biology*Physics 2009, 73:128-135. 15. Abe M, Hiraoka M, Takahashi M, Egawa S, Matsuda C, Onoyama Y, Morita K, Kakehi M, Sugahara T: Multi‐institutional studies on hyperthermia using an 8‐MHz radiofrequency capacitive heating device (thermotron RF‐8) in combination with radiation for cancer therapy. Cancer 1986, 58:1589-1595. 16. Andocs G, Rehman M, Zhao Q, Tabuchi Y, Kanamori M, Kondo T: Comparison of biological effects of modulated electro-hyperthermia and conventional heat treatment in human lymphoma U937 cells. Cell Death Discovery 2016, 2:16039. 17. Andocs G, Szasz O, Szasz A: Oncothermia treatment of cancer: from the laboratory to clinic. Electromagnetic Biology and Medicine 2009, 28:148-165. 18. Yang K-L, Huang C-C, Chi M-S, Chiang H-C, Wang Y-S, Hsia C-C, Andocs G, Wang H-E, Chi K-H: In vitro comparison of conventional hyperthermia and modulated electro-hyperthermia. Oncotarget 2016. 19. Cha J, Jeon TW, Lee CG, Oh ST, Yang HB, Choi KJ, Seo D, Yun I, Baik IH, Park KR, et al: Electro-hyperthermia inhibits glioma tumorigenicity through the induction of E2F1-mediated apoptosis. Int J Hyperthermia 2015, 31:784-792. 20. Szasz O: Oncothermia – Nano-Heating Paradigm. Journal of Cancer Science & Therapy 2014, 06. 21. Qin W, Akutsu Y, Andocs G, Suganami A, Hu X, Yusup G, Komatsu-Akimoto A, Hoshino I, Hanari N, Mori M, et al: Modulated electro-hyperthermia enhances dendritic cell therapy through an abscopal effect in mice. Oncol Rep 2014, 32:2373-2379. 22. Tsang Y-W, Huang C-C, Yang K-L, Chi M-S, Chiang H-C, Wang Y-S, Andocs G, Szasz A, Li W-T, Chi K-H: Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy. BMC cancer 2015, 15:708. 23. Moran CH, Wainerdi SM, Cherukuri TK, Kittrell C, Wiley BJ, Nicholas NW, Curley SA, Kanzius JS, Cherukuri P: Size-dependent joule heating of gold nanoparticles using capacitively coupled radiofrequency fields. Nano Research 2009, 2:400-405. 24. Raoof M, Corr SJ, Zhu C, Cisneros BT, Kaluarachchi WD, Phounsavath S, Wilson LJ, Curley SA: Gold nanoparticles and radiofrequency in experimental models for hepatocellular carcinoma. Nanomedicine 2014, 10:1121-1130. 25. Chithrani BD, Ghazani AA, Chan WCW: Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Letters 2006, 6:662-668. 26. Raoof M, Corr SJ, Kaluarachchi WD, Massey KL, Briggs K, Zhu C, Cheney MA, Wilson LJ, Curley SA: Stability of antibody-conjugated gold nanoparticles in the endolysosomal nanoenvironment: implications for noninvasive radiofrequency-based cancer therapy. Nanomedicine 2012, 8:1096-1105. 27. Collins CB, McCoy RS, Ackerson BJ, Collins GJ, Ackerson CJ: Radiofrequency heating pathways for gold nanoparticles. Nanoscale 2014, 6:8459-8472. 28. Li D, Jung YS, Tan S, Kim HK, Chory E, Geller DA: Negligible absorption of radiofrequency radiation by colloidal gold nanoparticles. Journal of colloid and interface science 2011, 358:47-53. 29. Liu X, Chen HJ, Chen X, Parini C, Wen D: Low frequency heating of gold nanoparticle dispersions for non-invasive thermal therapies. Nanoscale 2012, 4:3945-3953. 30. Kreyling WG, Fertsch-Gapp S, Schaffler M, Johnston BD, Haberl N, Pfeiffer C, Diendorf J, Schleh C, Hirn S, Semmler-Behnke M, et al: In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics. Beilstein J Nanotechnol 2014, 5:1699-1711. 31. Turkevich J, Stevenson PC, Hillier J: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 1951, 11:55-75. 32. Bastus NG, Comenge J, Puntes V: Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 2011, 27:11098-11105. 33. Perrault SD, Chan WC: Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50− 200 nm. Journal of the American Chemical Society 2009, 131:17042-17043. 34. Li J, Wu J, Zhang X, Liu Y, Zhou D, Sun H, Zhang H, Yang B: Controllable synthesis of stable urchin-like gold nanoparticles using hydroquinone to tune the reactivity of gold chloride. The Journal of Physical Chemistry C 2011, 115:3630-3637. 35. Wolfgang Haiss, Nguyen T. K. Thanh, Jenny Aveyard, Fernig DG: Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra. Analytical Chemistry 2007, 79:4215-4221. 36. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y: PEG-modified gold nanorods with a stealth character for in vivo applications. Journal of Controlled Release 2006, 114:343-347. 37. Corr SJ, Raoof M, Mackeyev Y, Phounsavath S, Cheney MA, Cisneros BT, Shur M, Gozin M, McNally PJ, Wilson LJ, Curley SA: Citrate-Capped Gold Nanoparticle Electrophoretic Heat Production in Response to a Time-Varying Radio-Frequency Electric Field. The Journal of Physical Chemistry C 2012, 116:24380-24389. 38. Gunduz N, Ceylan H, Guler MO, Tekinay AB: Intracellular Accumulation of Gold Nanoparticles Leads to Inhibition of Macropinocytosis to Reduce the Endoplasmic Reticulum Stress. Sci Rep 2017, 7:40493.
|