跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許雅淳
研究生(外文):HSU,YA-CHUN
論文名稱:複合式傾斜布拉格光纖光柵之研製與應用
論文名稱(外文):Innovational Implementation and Application of Tilted Fiber Bragg Gratings
指導教授:江家慶江家慶引用關係
指導教授(外文):CHIANG, CHIA-CHIN
口試委員:孫迺翔蔣榮生江家慶吳兆偉
口試委員(外文):SUN,NAI-XIANGJIANG,RONG-SHENGCHIANG, CHIA-CHINWU,ZHAO-WEI
口試日期:2019-07-26
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:448
中文關鍵詞:傾斜布拉格光纖光柵微小彎曲氧化石墨烯PEDOT:PSSPAHP4光纖感測器濕度感測器多物理量量測複合式光纖感測器
外文關鍵詞:Tilted fiber Bragg gratingsU-bentGraphene oxidePEDOT:PSSPAHP4Optical fiber sensorHumidity sensorMulti-parameters sensing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出將高分子材料應用於傾斜布拉格光纖光柵感測器上及研製多種複合式感測器用於多物理量的同時監測,其中傾斜式布拉格光纖光柵感測器(Tilted fiber Bragg grating; TFBG)的感測原理是透過纖芯與纖殼模態之間的相互耦合來監測物理量,纖殼模態有量測外界折射率變化的能力,進而產生頻譜飄移。
首先將傾斜式布拉格光纖光柵進行參數最佳化,目地為提高反射率及耦合強度,利用KrF準分子雷射及相位光罩製程搭配濕蝕刻,並研製出掃描式傾斜布拉格光纖光柵。實驗顯示,傾斜10度之布拉格光纖光柵,用準分子雷射曝光5分鐘,搭配濕蝕刻減少光纖直徑,完成直接曝光的傾斜光纖光柵最佳化;再利用雷射光掃描方法,掃描出一長25 mm的傾斜光纖光柵,有利於複合式感測器原件研製。
其次,在TFBG中使用三種類型的薄膜塗層,氧化石墨烯(GO)、導電聚合物PEDOT:PSS和多環芳烴PAHP4來進行濕度和溫度量測。比較每個感測層的靈敏度和線性度,以及纖芯及纖殼模態的共振波長。濕度實驗顯示,塗層PAHP4的TFBG對濕度具有最佳靈敏度,其中共振波長的靈敏度為0.0112nm/%RH,線性度為0.895。溫度實驗顯示,塗覆GO的TFBG具有最佳的靈敏度,共振波長的靈敏度為0.0232 nm/°C,線性度為0.999。
最後,TFBG塗有三種感測層,並結合U型光纖探針,以提高檢測靈敏度。 濕度檢測結果顯示,塗有GO感測層的TFBG與U型探針光纖作結合,其靈敏度是沒有U形探針光纖的10倍,且共振波長最大可從0.0019 nm/%RH至0.0194 nm /%RH(R2為0.97)。塗有PAHP4感測層的TFBG與U型探針光纖結合,使靈敏度提高4倍,最大共振波長為0.0474 nm/%RH(R2為0.908)。
彎曲型傾斜布拉格光纖光柵感測器不僅能應用在液體的濃度檢測上,未來可以配合Lab on fiber製作成可攜式光纖檢測儀。
We propose optical fiber sensors based on tilted fiber Bragg gratings (TFBG) under the development of techniques to monitor physical properties through the mutual coupling between the core and cladding mode in the long-period fiber grating.That is suitable for manufacturing a sensor with high sensitivity due to the affected RI.
First, the purpose is to improve the high reflectivity and coupling strength by optimizing the parameters of the TFBG. The scanning type TFBG was performed by laser-assisted wet chemical etching and phase mask process. The results show that after 5 minutes of exposure by an excimer laser and the diameter of the fiber is reduced by wet etching, a TFBG with a total length of 25 mm is scanned with an inclination angle of 10 degrees to obtain the most sensitivity sensor.
Second, three types of thin-film coatings, graphene oxide (GO), conductive polymer PEDOT: PSS, and polycyclic aromatic hydrocarbons PAHP4, were used in TFBG to evaluate humidity and temperature. Comparing the sensitivity and linearity of each sensing layer, and the resonance wavelength of the core-cladding mode. The results present that TFBG based on coating PAHP4 has the best sensitivity for humidity, wherein the shift in resonance wavelength is 0.0112 nm/% RH and the linearity for R2 is 0.895. The temperature experiment results exhibit that the TFBG coated with GO has the best sensitivity, the shift in resonance wavelength is 0.0118 nm/°C, and the linearity for R2 is 0.999.
Final, TFBG coated with three sensing layers combined with U-shape fiber optic probes to improve detection sensitivity. The humidity evaluation results show that the TFBG coated with the GO functional layer combined with the U-shaped probe fiber has the sensitivity is 10 times of without U-shaped probe fiber, and has obtained a maximum improvement of the resonance wavelength from 0.0019 nm/% RH to 0.0194 nm/% RH (R2 is 0.97). The TFBG coated with the PAHP4 functional layer is combined with the U-shaped probe fiber to improve the sensitivity by 4 times, the maximum resonance wavelength is 0.0474 nm/%RH (R2 is 0.908).

致謝 1
摘要 2
ABSTRACT 3
目錄 5
圖目錄 10
表目錄 25
第一章 序論 1
1.1研究動機 1
1.2研究背景 2
1.2-1布拉格光纖光柵之製作方法 2
1.2-2傾斜布拉格光纖光柵不同角度及時間之影響 8
1.2-3光纖感測器直徑對靈敏度之影響 9
1.2-4傾斜布拉格光纖光柵對折射率之影響 13
1.2-5光纖感測器應用於濕度感測 15
1.2-6光纖感測器應用於溫度感測 29
1.2-7光纖感測器應用於折射率感測 37
1.2-8光纖感測器應用於同時量測多物理量 49
1-2.9複合式光纖感測器之研製與應用 57
1.3研究目的 62
第二章 基礎理論 64
2.1傾斜布拉格光纖光柵基本原理 64
2.2耦合模態理論 67
2.3耦合模態理論分析 74
2.4傾斜光纖光柵之共振波長位置 79
2.5傾斜光纖光柵溫度與折射率靈敏度分析 80
2.5-1溫度靈敏度分析 80
2.5-2外界折射率靈敏度分析 82
2.6彎曲光纖的能量損耗分析 83
2.7彎曲半徑與波長位置之關係 85
2.8彎曲光纖波長與折射率之關係 87
第三章 研究方法與步驟 89
3.1光纖製程-傾斜布拉格光纖光柵製程 89
3.2光纖製程-掃描傾斜布拉格光纖光柵製程 92
3.3蝕刻製程-光纖濕蝕刻製程 95
3.4塗覆製程-浸塗法(Dip-coating) 97
3.4-1浸塗石墨烯水溶液 97
3.4-2浸塗導電高分子PEDOT:PSS 101
3.4-3浸塗新型導電高分子PAHP4 105
3.5彎曲光纖製程 109
3.5-1U型光纖燒製法 109
3.5-2封裝製程 110
3.6實驗架構-濕度感測 111
3.7實驗架構-溫度感測 112
3.8實驗架構-葡萄糖感測(折射率) 114
3.8-1彎曲型傾斜布拉格光纖光柵架構圖 114
3.8-2球型傾斜布拉格光纖光柵 115
第四章 實驗結果與討論 116
4.1傾斜布拉格光纖光柵加工參數最佳化 117
4.1-1傾斜布拉格光纖光柵加工參數最佳化-不同角度比較 118
4.1-2傾斜布拉格光纖光柵加工參數最佳化-不同光纖直徑比較 121
4.1-3傾斜布拉格光纖光柵加工參數最佳化-不同光纖直徑之靈敏度驗證 133
4.1-4傾斜布拉格光纖光柵加工參數最佳化-不同加工時間比較 147
4.2掃描型傾斜布拉格光纖光柵寫入技術 155
4.2-1掃描型傾斜布拉格光纖光柵寫入技術-焦距最佳化 156
4.2-2掃描型傾斜布拉格光纖光柵寫入技術-不同長度比較 174
4.3傾斜布拉格光纖光柵塗覆不同感測層應用於濕度量測 177
4.3-1塗覆GO-傾斜布拉格光纖光柵應用於濕度量測 178
4.3-2塗覆PEDOT:PSS-傾斜布拉格光纖光柵應用於濕度量測 198
4.3-3塗覆PAHP4-傾斜布拉格光纖光柵應用於濕度量測 217
4.3-4結論-傾斜布拉格光纖光柵塗覆不同感測層應用於濕度量測 233
4.4傾斜布拉格光纖光柵塗覆不同感測層應用於溫度量測 235
4.4-1塗覆GO-傾斜布拉格光纖光柵應用於溫度量測 236
4.4-2塗覆PEDOT:PSS-傾斜布拉格光纖光柵應用於溫度量測 251
4.4-3塗覆PAHP4-傾斜布拉格光纖光柵應用於溫度量測 266
4.4-4結論-傾斜布拉格光纖光柵塗覆不同感測層應用於溫度量測 281
4.5複合式感測器-傾斜布拉格光纖光柵結合彎曲型光纖探針之研製 283
4.5-1傾斜布拉格光纖光柵結合彎曲型光纖探針-位置之最佳化 284
4.5-2傾斜布拉格光纖光柵結合彎曲型光纖探針-光源經過不同結構之比較 293
4.5-3結論 – 傾斜布拉格光纖光柵結合彎曲型光纖探針最佳化 311
4.6複合式感測器-傾斜布拉格光纖光柵結合彎曲型光纖探針塗覆不同感層應用於濕度量測 313
4.6-1塗覆GO-傾斜布拉格光纖光柵結合彎曲型光纖應用於濕度量測 314
4.6-2塗覆PEDOT:PSS-傾斜布拉格光纖光柵結合彎曲型光纖應用於濕度量測 325
4.6-3塗覆PAHP4-傾斜布拉格光纖光柵結合彎曲型光纖應用於濕度量測 337
4-6.4結論-傾斜布拉格光纖光柵結合彎曲型光纖探針應用於濕度量測 349
4.7複合式感測器-傾斜布拉格光纖光柵結合彎曲型光纖探針塗覆不同感層應用於溫度量測 353
4.7-1塗覆GO-傾斜布拉格光纖光柵結合彎曲型光纖應用於溫度量測 354
4.7-2塗覆PEDOT:PSS-傾斜布拉格光纖光柵結合彎曲型光纖應用於溫度量測 368
4.7-3塗覆PAHP4-傾斜布拉格光纖光柵結合彎曲型光纖應用於溫度量測 382
4-7.4結論-傾斜布拉格光纖光柵結合彎曲型光纖探針應用於溫度量測 396
4.8複合式感測器-傾斜布拉格光纖光柵結合彎曲型光纖探針應用於折射率量測 400
第五章 結論 406
第六章 未來展望 407
6.1複合式感測器-新型超結構光纖感測器 407
6.1-1布拉格光纖光柵結合蝕刻型長週期光纖感測器 407
6.1-2傾斜布拉格光纖光柵結合蝕刻型長週期光纖感測器 408
參考資料 409

[1]K. Hill, Y. Fujii, D. C. Johnson, and B. Kawasaki, "Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication," Applied physics letters, vol. 32, pp. 647-649, 1978.
[2]J. Martin, J. Lauzon, S. Thibault, and F. Ouellette, "Novel writing technique of long and highly reflective in-fiber Bragg gratings and investigation of the linearly chirped component," in Optical Fiber Communication Conference, 1994, p. PD29.
[3]Z. Zhao, S. Zhang, Y. Yu, Z. Zhuo, J. Zhang, W. Zheng, et al., "Fabrication of a tilted fiber Bragg grating with a designed reflection spectrum profile," Optics letters, vol. 29, pp. 244-246, 2004.
[4]A. Kameyama, M. Katto, and A. Yokotani, "A simplified fabrication technique for tilted fiber Bragg grating for the simultaneous measurement of refractive index and temperature of liquids," Journal of Laser Micro Nanoengineering, vol. 9, p. 230, 2014.
[5]T. Guo, F. Liu, B.-O. Guan, and J. Albert, "Tilted fiber grating mechanical and biochemical sensors," Optics & Laser Technology, vol. 78, pp. 19-33, 2016.
[6]R. Wang, J. Si, T. Chen, L. Yan, H. Cao, X. Pham, et al., "Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser," Optics express, vol. 25, pp. 23684-23689, 2017.
[7]X. Chen, K. Zhou, L. Zhang, and I. Bennion, "Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber," IEEE photonics technology letters, vol. 17, pp. 864-866, 2005.
[8]C. Chen, C. Caucheteur, P. Mégret, and J. Albert, "The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses," Measurement Science and Technology, vol. 18, p. 3117, 2007.
[9]Y. Miao, B. Liu, S. Tian, and Q. Zhao, "Temperature‐insensitive refractive index sensor based on tilted fiber Bragg grating," Microwave and Optical Technology Letters, vol. 51, pp. 479-483, 2009.
[10]K. S. Chiang, Y. Liu, M. N. Ng, and X. Dong, "Analysis of etched long-period fibre grating and its response to external refractive index," Electronics Letters, vol. 36, pp. 966-967, 2000.
[11]G. Laffont and P. Ferdinand, "Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry," Measurement Science and Technology, vol. 12, p. 765, 2001.
[12]Y.-p. Miao and B. Liu, "Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating," Optical Fiber Technology, vol. 15, pp. 233-236, 2009.
[13]Y. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, et al., "Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating," IEEE Photonics technology letters, vol. 21, pp. 441-443, 2009.
[14]L. Wang, N. Fang, Z. Huang, and M. Abadie, "Polyimide-coated fiber Bragg grating sensors for humidity measurements," High Performance Polymers-Polyimides Based-From Chemistry to Applications, 2012.
[15]Y. Lin, Y. Gong, Y. Wu, and H. Wu, "Polyimide-coated fiber Bragg grating for relative humidity sensing," Photonic sensors, vol. 5, pp. 60-66, 2015.
[16]Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, et al., "Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide," Applied Physics Letters, vol. 109, p. 031107, 2016.
[17]Y.-D. Chiu, C.-W. Wu, and C.-C. Chiang, "Tilted fiber Bragg grating sensor with graphene oxide coating for humidity sensing," Sensors, vol. 17, p. 2129, 2017.
[18]S. F. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, et al., "Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating," Sensors, vol. 12, pp. 8847-8860, 2012.
[19]W. Wang, T. Sun, J. Peng, J. Dai, and M. Yang, "Humidity Sensor Based on Fiber BraggGratingCoated With DifferentPore-FoamingAgentDopedPolyimides," IEEE Photonics Technology Letters, vol. 29, pp. 1963-1966, 2017.
[20]H. Alsweefe, S. K. Al-Hayali, and A. H. M. Al-Janabi, "Efficient humidity sensor based on an etched no-core fiber coated with copper oxide nanoparticles," Journal of Nanophotonics, vol. 12, p. 046018, 2018.
[21]S. Novais, M. Ferreira, and J. Pinto, "Relative Humidity Fiber Sensor Based on Multimode Interferometer Coated with Agarose-Gel," Coatings, vol. 8, p. 453, 2018.
[22]T. Sun, W. Wang, J. Peng, Y. Qu, J. Dai, and M. Yang, "Fiber Bragg Grating Humidity Sensor Based on Polymer Coating with Activated Carbon Topping Layer," in Optical Fiber Sensors, 2018, p. TuE38.
[23]B. Jiang, Z. Bi, Z. Hao, Q. Yuan, D. Feng, K. Zhou, et al., "Graphene oxide-deposited tilted fiber grating for ultrafast humidity sensing and human breath monitoring," Sensors and Actuators B: Chemical, vol. 293, pp. 336-341, 2019.
[24]E. Chehura, S. W. James, and R. P. Tatam, "Simultaneous independent measurement of temperature and strain using a tilted fibre Bragg grating," in Third European Workshop on Optical Fibre Sensors, 2007, p. 66190I.
[25]L.-Y. Shao, Y. Shevchenko, and J. Albert, "Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors," Optics express, vol. 18, pp. 11464-11471, 2010.
[26]Y.-p. Miao, B. Liu, and K. Zhang, "Linear edge and temperature characteristic of tilted fiber Bragg gratings cladding-mode envelope," Optical Fiber Technology, vol. 17, pp. 286-290, 2011.
[27]Y. F. Gao, C. Liu, and H. W. Mu, "Effects of Temperature Changes on the Transmission Spectra of Tilted Fiber Bragg Grating," in Advanced Materials Research, 2014, pp. 462-465.
[28]B. Gu, W. Qi, J. Zheng, Y. Zhou, P. P. Shum, and F. Luan, "Simple and compact reflective refractometer based on tilted fiber Bragg grating inscribed in thin-core fiber," Optics letters, vol. 39, pp. 22-25, 2014.
[29]X. Dong, K. I. Hajim, J. Yang, and R. K. Ahmed, "TILTED FIBER BRAGG GRATINGS (TFBGs) TEMPERATURE SENSING ELEMENT USING 244NM Ar+ LASER WRITTEN ON SIDE HOLE FIBER," Diyala Journal of Engineering sciences, vol. 8, pp. 116-123, 2015.
[30]F. Huang, T. Chen, J. Si, X. Pham, and X. Hou, "Fiber laser based on a fiber Bragg grating and its application in high-temperature sensing," Optics Communications, 2019.
[31]M.-S. Kwon and W. H. Steier, "Glucose senosr based on two distinct microring resonators," in OECC/ACOFT 2008-Joint Conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology, 2008, pp. 1-2.
[32]S. Binu, V. M. Pillai, V. Pradeepkumar, B. Padhy, C. Joseph, and N. Chandrasekaran, "Fibre optic glucose sensor," Materials Science and Engineering: C, vol. 29, pp. 183-186, 2009.
[33]S. W. Harun, A. A. Jasim, H. A. Rahman, M. Z. Muhammad, and H. Ahmad, "Micro-ball lensed fiber-based glucose sensor," IEEE Sensors Journal, vol. 13, pp. 348-350, 2012.
[34]D. Li, S. Yu, C. Sun, C. Zou, H. Yu, and K. Xu, "U-shaped fiber-optic ATR sensor enhanced by silver nanoparticles for continuous glucose monitoring," Biosensors and Bioelectronics, vol. 72, pp. 370-375, 2015.
[35]H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, "Polymer optical fiber compound parabolic concentrator fiber tip-based glucose sensor: In vitro testing," IEEE Sensors Journal, vol. 16, pp. 8483-8488, 2016.
[36]J. Huang, M. Li, P. Zhang, P. Zhang, and L. Ding, "Temperature controlling fiber optic glucose sensor based on hydrogel-immobilized GOD complex," Sensors and Actuators B: Chemical, vol. 237, pp. 24-29, 2016.
[37]C.-T. Wang and C.-C. Chiang, "The application of a U-shaped whispering-gallery mode-based optical fiber sensor for glucose measurement," in 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE), 2016, pp. 573-576.
[38]C.-W. Wu, C.-Y. Kuo, J.-W. Lin, and C.-C. Chiang, "Application of a WGM optical fiber probe fabricated by 3D printing technology for glucose concentration measurement," Optical and Quantum Electronics, vol. 49, p. 29, 2017.
[39]C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, et al., "U-bent fiber optic SPR sensor based on graphene/AgNPs," Sensors and Actuators B: Chemical, vol. 251, pp. 127-133, 2017.
[40]M. Azkune Ulla, L. Ruiz Rubio, G. Aldabaldetreku Etxeberria, E. Arrospide Zabala, L. Pérez Álvarez, I. Bikandi Irazabal, et al., "U-Shaped and Surface Functionalized Polymer Optical Fiber Probe for Glucose Detection," 2017.
[41]Y. Miao, B. Liu, and Q. Zhao, "Simultaneous measurement of strain and temperature using single tilted fibre Bragg grating," Electronics Letters, vol. 44, pp. 1242-1243, 2008.
[42]N. J. Alberto, C. A. Marques, J. L. Pinto, and R. N. Nogueira, "Three-parameter optical fiber sensor based on a tilted fiber Bragg grating," Applied Optics, vol. 49, pp. 6085-6091, 2010.
[43]Q. Jiang, D. Hu, and M. Yang, "Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating," Sensors and Actuators A: Physical, vol. 170, pp. 62-65, 2011.
[44]P. Kisała, D. Harasim, and J. Mroczka, "Temperature-insensitive simultaneous rotation and displacement (bending) sensor based on tilted fiber Bragg grating," Optics express, vol. 24, pp. 29922-29929, 2016.
[45]T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, "Simultaneous measurement of liquid level and temperature using tilted fiber Bragg grating," IEEE Sensors Journal, vol. 16, pp. 1205-1209, 2015.
[46]C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, "Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing," Sensors and Actuators B: Chemical, vol. 255, pp. 1937-1944, 2018.
[47]X. Dong, T. Li, Y. Liu, Y. Li, C.-L. Zhao, and C. C. Chan, "Polyvinyl alcohol-coated hybrid fiber grating for relative humidity sensing," Journal of biomedical optics, vol. 16, p. 077001, 2011.
[48]M. Shao, X. Qiao, H. Fu, H. Li, J. Zhao, and Y. Li, "A Mach–Zehnder interferometric humidity sensor based on waist-enlarged tapers," Optics and Lasers in Engineering, vol. 52, pp. 86-90, 2014.
[49]J. Yang, X. Dong, K. Ni, C. C. Chan, and P. P. Shun, "Intensity-modulated relative humidity sensing with polyvinyl alcohol coating and optical fiber gratings," Applied optics, vol. 54, pp. 2620-2624, 2015.
[50]Y. L. Yu, H. H. Hung, S. K. Liaw, M. H. Shih, H. Kishikawa, and N. Goto, "Simultaneously two‐parameter measurement using tilted fiber grating and long period fiber grating," Microwave and Optical Technology Letters, vol. 59, pp. 1122-1125, 2017.
[51]T. Erdogan, "Fiber grating spectra," Journal of lightwave technology, vol. 15, pp. 1277-1294, 1997.
[52]A. Harris and P. Castle, "Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius," Journal of Lightwave technology, vol. 4, pp. 34-40, 1986.
[53]H. Renner, "Bending losses of coated single-mode fibers: a simple approach," Journal of Lightwave technology, vol. 10, pp. 544-551, 1992.
[54]T. Liu, Y. Chen, Q. Han, and X. Lü, "Magnetic field sensor based on U-bent single-mode fiber and magnetic fluid," IEEE Photonics Journal, vol. 6, pp. 1-7, 2014.
[55]X. Zhang and W. Peng, "Bent-fiber intermodal interference based dual-channel fiber optic refractometer," Optics express, vol. 23, pp. 7602-7610, 2015.
[56]K. Byron, K. Sugden, T. Bricheno, and I. Bennion, "Fabrication of chirped Bragg gratings in photosensitive fibre," Electronics letters, vol. 29, pp. 1659-1660, 1993.
[57]R. Kashyap, Fiber bragg gratings: Academic press, 2009.
[58]M. Nasrollahzadeh, F. Babaei, P. Fakhri, and B. Jaleh, "Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites," Rsc Advances, vol. 5, pp. 10782-10789, 2015.
[59]K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. Bradley, and J. R. Durrant, "Degradation of organic solar cells due to air exposure," Solar energy materials and solar cells, vol. 90, pp. 3520-3530, 2006.
[60]J. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello, and D. D. Bradley, "Investigation of the effects of doping and post‐deposition treatments on the conductivity, morphology, and work function of poly (3, 4‐ethylenedioxythiophene)/poly (styrene sulfonate) films," Advanced Functional Materials, vol. 15, pp. 290-296, 2005.
[61]W. A. Daoud, J. H. Xin, and Y. S. Szeto, "Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibers," Sensors and Actuators B: Chemical, vol. 109, pp. 329-333, 2005.
[62]J. Liu, M. Agarwal, K. Varahramyan, E. S. Berney IV, and W. D. Hodo, "Polymer-based microsensor for soil moisture measurement," Sensors and Actuators B: Chemical, vol. 129, pp. 599-604, 2008.
[63]S. Taccola, F. Greco, A. Zucca, C. Innocenti, C. s. de Julián Fernández, G. Campo, et al., "Characterization of free-standing PEDOT: PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors," ACS applied materials & interfaces, vol. 5, pp. 6324-6332, 2013.
[64]  張睿廷, "S型長周期光纖光柵磁場與濕度感測器之研製, 國立高雄應用科技大學機械系碩士論文," 2017.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊