|
[1] J. Glaser, “How GaN power transistors drive high-performance Lidar: generating ultrafast pulsed power with GaN FETs,” IEEE Power Electronics Magazine, vol. 4, no. 1, pp. 25-35, March 2017. [2] J. Levinson, M. Montemerlo, and S. Thrun. (2007). Map-based precision vehicle localization in urban environments. Robotics: Science and Systems III. [Online]. Available: http://www.roboticsproceedings.org/rss03/p16.pdf [3] P.K. Bhadani, “Capacitor-charging power supply for laser pulsers using a boost circuit,” Review of Scientific Instruments, vol. 60, pp. 605-607, Apr. 1989. [4] Dianbo Fu, Fred C. Lee, Yang Qiu, Fred Wang. “A Novel High-Power-Density Three-Level LCC Resonant Converter With Constant-Power-Factor-Control for Charging Applications,” IEEE Transactions on Power Electronics 23:5, pp. 2411-2420, 2008. [5] P. Iyengar, J.E. Fletcher, D.J. Bittlestone, S.J. Finney, M.A. Sinclair. “Enhanced MOSFET gate driver for pulsed power IVA module,” IEEE Pulsed Power Conference, pp. 1477-1481, 2011. [6] Honggang Sheng, Wei Shen, Hongfang Wang, Dianbo Fu, Yunqing Pei, Xu Yang, Fei Wang, Dushan Boroyevich, Fred C. Lee, C. Wesley Tipton. “Design and Implementation of a High Power Density Three-Level Parallel Resonant Converter for Capacitor Charging Pulsed-Power Supply,” IEEE Transactions on Plasma Science 39:4, pp. 1131-1140, 2011. [7] J. Glaser, “High Power Nanosecond Pulse Laser Driver Using a GaN FET,” PCIM Europe, pp. 662-669, Jun. 2018. [8] José Fernando Silva, Luis Redondo, William C. Dillard. “Solid-State Pulsed Power Modulators and Capacitor Charging Applications,” Power Electronics Handbook, pp. 593-640, 2018. [9] E. Abramov, et al., “Low voltage sub-nanosecond pulsed current driver IC for high-resolution LIDAR applications,” APEC, pp. 708-715, 2018. [10] K. Yashiki et al., “5 mW/Gbps hybrid-integrated Si-photonics-based optical I/O cores and their 25-Gbps/ch error-free operation with over 300-m MMF,” OFC 2015, Paper Th1G.1, 2015. [11] K. Yashiki et al., “25-Gbps/ch error-free operation over 300-m MMF of low-power-consumption silicon-photonics-based chip-scale optical I/O cores,” IEICE Trans. Electron., in press [12] Koichi Takemura, Mitsuru Kurihara, Toshinori Uemura, Akio Ukita, Kenichiro Yashiki, Kazuhiko Kurata, “Chip-scale packaging of hybrid-integrated Si photonic transceiver: Optical I/O core,” CPMT Symposium Japan (ICSJ) 2015 IEEE, pp. 191-194, 2015. [13] Efficient Power Conversion Corp. (2017). Application Notes. [Online]. Available: http://epc-co.com/epc/Portals/0/epc/documents/product-training/Using_GaN_r4.pdf [14] B. J. Baliga, “Gallium Nitride Devices for Power Electronic Applications”, vol. 28, no. 7, Semicond. Sci. & Technol., pp. 1-8, 2013. [15] A. Lidow, et al., “GaN Transistors for Efficient Power Conversion,” 2nd Ed, John Wiley & Sons, West Sussex, UK, 2015. [16] Efficient Power Conversion Corp. (2015). EPC2040 data sheet. [Online]. Available: epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC2040_datasheet.pdf [17] V. Barkhordarian, “Power MOSFET basics,” International Rectifier, El Segundo, CA, Appnotes. [Online]. Available: www.irf.com/technicalinfo/appnotes/mosfet.pdf. [18] M. S. Parihar, D. Ghosh, and A. Kranti, “Ultra low power junction less MOSFETs for subthreshold logic applications,” IEEE Trans. Electron Devices, vol. 60, no. 5, pp. 1540–1546, May 2013. [19] Y. Ren, M. Xu, J. Zhou, and F. C. Lee, “Analytical loss model of power MOSFET,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 310–319, Mar. 2006. [20] M. K. Song, et al., “A 20V 8.4W 20MHz four-phase GaN DC-DC converter with fully on-chip dual-SR bootstrapped GaN FET driver achieving 4ns constant propagation delay and 1ns switching rise time,” ISSCC Dig. Tech. Papers, pp. 302-303, Feb. 2015. [21] X. Ke, et al., “A 3-to-40V 10-to-30MHz automotive-use GaN driver with active BST balancing and VSW dual-edge dead-time modulation achieving 8.3% efficiency improvement and 3.4ns constant propagation delay,” ISSCC Dig. Tech. Papers, pp. 302-303, Feb. 2016. [22] X. Ke, et al., “A 10MHz 3-to-40V VIN Tri-Slope Gate Driving GaN DC-DC Converter with 40.5dBμV Spurious Noise Compression and 79.3% Ringing Suppression for Automotive Applications,” ISSCC, pp. 430-431, Feb. 2017.
|