跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬佑昇
研究生(外文):Ma, Yu-Sheng
論文名稱:應用於高解析度及動態有效距離自駕車光達系統具有電流脈衝平衡技術達到次奈秒電流脈衝寬度之數位型砷化鎵驅動器
論文名稱(外文):A Digital-Type GaN Driver with Current-Pulse-Balancer Technique Achieving Sub-nanosecond Current Pulse Width for High Resolution and Dynamic Effective Range LiDAR System
指導教授:陳科宏陳科宏引用關係
指導教授(外文):Chen, Ke-Horng
口試委員:王清松黃立仁
口試委員(外文):Wang, Ching-SungHuang, Li-Ren
口試日期:2018-10-22
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:37
中文關鍵詞:砷化鎵光達脈衝重複頻率雷射二極體頂點電流校正電流脈衝平衡器
外文關鍵詞:Gallium Nitride (GaN)light detection and ranging (LiDAR)pulse repetition frequency (PRF)laser diode peak current correction (LDPCC)current pulse balancer (CPB)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:402
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在汽車應用中,通過砷化鎵場效電晶體控制方法的短雷射脈衝寬度和有效保證精確的雷射脈衝是高解析度光達系統中的主要挑戰。有兩種主要的雷射二極體驅動電路用於脈衝光達系統應用。首先,在電容器放電驅動電路中,接受寄生電感的好控制脈衝簡化了控制。但是,固定的雷射脈衝會導致脈衝寬度的無效調變並且限制了距離解析度。在高脈衝重複頻率下,不完整脈衝和不足的功率將減小有效檢測範圍,因為在每個命令周期的關閉期間,總線電壓接近百伏特。另一個具有低電源電壓的場效電晶體控制驅動器允許複雜的命令序列,然而此架構需要電流檢測和總線電壓控制,以確保脈衝到脈衝的可重複性。此外,此電路必須足夠慢地切換,以使寄生電感不會顯著降低波形。
為防止元件損壞,傳統的柵極電阻限制了開關頻率並增加損耗。另一種自適應三斜率柵極驅動器會受到製程、電壓及溫度變化的影響,並且下降斜率是不確定的,這會導致上升時間和下降時間的不平衡並使雷射脈衝失真。
因此,本論文提出了一種用於光達系統的數位型砷化鎵場效電晶體驅動器,具有雷射二極體頂點電流校正技術和電流脈衝平衡器迴圈。即使在功率路徑中存在寄生電阻的變化,雷射二極體頂點電流校正技術在最高200MHz脈衝重複頻率下,可通過調整總線電壓來確保恆定的28A電流脈衝,從而提高脈衝到脈衝的可靠性。另外,利用所提出的非同步二進制驅動器,電流脈衝平衡器優化驅動器速度,並將脈衝寬度減小到0.9ns。為防止電流脈衝失真,電流脈衝平衡器將電流脈衝上升時間和下降時間在30ns內皆平衡至0.2ns。
In automotive applications, short laser pulse ILASER widths through GaN FET control methods and effective assurance of accurate ILASER are major challenges in high-resolution light detection and ranging (LiDAR) systems. There are two main laser-diode driver circuits for pulsed LiDAR applications. First, a well-controlled pulse that accepts the parasitic inductance simplifies control in capacitor discharge driver circuit. But, the fixed ILASER results in an ineffective modulation of the pulse width and limits the distance resolution. Under a high pulse repetition frequency (PRF), incomplete pulses and insufficient power will reduce the effective detection range since the bus voltage is near hundred volts during the off time of each command cycle. The other FET control driver with a low supply voltage allows complex command sequences, while the structure needs current sensing and bus voltage control to ensure pulse-to-pulse repeatability. Furthermore, the circuit must switch slowly enough that stray inductance does not significantly degrade the waveforms.
To prevent the device being damaged, the conventional gate resistor limits the switching frequency and increases losses. The other adaptive triple-slope gate driver is not free from process, voltage, and temperature (PVT) variations and the falling slope is indeterminate, which induces imbalance between rise time and fall time and distorts ILASER.
Therefore, this thesis proposes a digital-type GaN driver with a laser diode peak current correction (LDPCC) technique and a current pulse balancer (CPB) loop for LiDAR systems. Even with parasitic resistance changes in the power path, the LDPCC ensures a constant 28A ILASER by adjusting the bus voltage under 200MHz maximum PRF to enhance pulse-to-pulse reliability. In addition, with the proposed asynchronous binary driver (ABD), the CPB optimizes driver speed, and reduces pulse width to 0.9ns. To prevent ILASER distortion, the CPB balances ILASER rise time and fall time to 0.2ns in 30ns.
摘 要 i
ABSTRACT ii
誌 謝 iii
Contents iv
Figure Captions v
Table Captions vii
Chapter 1 Introduction 1
1.1 Laser Diode Drivers in Light Detection and Ranging (LiDAR) 1
1.2 Gallium Nitride (GaN) FETs in Laser Diode Drivers 5
1.3 Motivation 7
1.4 Thesis Organization 8
Chapter 2 Prior Arts for Laser Diode Drivers and GaN Driving Control 9
2.1 Capacitor Discharge Driver and FET Control Driver 9
2.2 Dual SR Control and Adaptive Tri-Slope Gate Driving 12
Chapter 3 Proposed Digital-Type GaN Driver for LiDAR Systems 16
3.1 Architecture of Proposed Digital-Type GaN Driver 16
3.2 Laser Diode Peak Current Correction 18
3.3 Current Pulse Balancer Loop 19
Chapter 4 Circuit Implementations 22
4.1 Laser Diode Peak Current Correction 22
4.2 Current Pulse Balancer Loop 24
4.2.1 Current Pulse Balancer 24
4.2.2 Asynchronous Binary Driver 26
Chapter 5 Experimental Results 29
5.1 Chip micrograph 29
5.2 Adjusted VBUS for Constant Peak Current with the LDPCC Technique 30
5.3 Transient Performances with the CPB Loop 31
5.4 VG and ILASER with Different Driving Capability of the ABD 32
5.5 Comparison Table 34
Chapter 6 Conclusion and Future Work 35
Reference 36
[1] J. Glaser, “How GaN power transistors drive high-performance Lidar: generating ultrafast pulsed power with GaN FETs,” IEEE Power Electronics Magazine, vol. 4, no. 1, pp. 25-35, March 2017.
[2] J. Levinson, M. Montemerlo, and S. Thrun. (2007). Map-based precision vehicle localization in urban environments. Robotics: Science and Systems III. [Online]. Available: http://www.roboticsproceedings.org/rss03/p16.pdf
[3] P.K. Bhadani, “Capacitor-charging power supply for laser pulsers using a boost circuit,” Review of Scientific Instruments, vol. 60, pp. 605-607, Apr. 1989.
[4] Dianbo Fu, Fred C. Lee, Yang Qiu, Fred Wang. “A Novel High-Power-Density Three-Level LCC Resonant Converter With Constant-Power-Factor-Control for Charging Applications,” IEEE Transactions on Power Electronics 23:5, pp. 2411-2420, 2008.
[5] P. Iyengar, J.E. Fletcher, D.J. Bittlestone, S.J. Finney, M.A. Sinclair. “Enhanced MOSFET gate driver for pulsed power IVA module,” IEEE Pulsed Power Conference, pp. 1477-1481, 2011.
[6] Honggang Sheng, Wei Shen, Hongfang Wang, Dianbo Fu, Yunqing Pei, Xu Yang, Fei Wang, Dushan Boroyevich, Fred C. Lee, C. Wesley Tipton. “Design and Implementation of a High Power Density Three-Level Parallel Resonant Converter for Capacitor Charging Pulsed-Power Supply,” IEEE Transactions on Plasma Science 39:4, pp. 1131-1140, 2011.
[7] J. Glaser, “High Power Nanosecond Pulse Laser Driver Using a GaN FET,” PCIM Europe, pp. 662-669, Jun. 2018.
[8] José Fernando Silva, Luis Redondo, William C. Dillard. “Solid-State Pulsed Power Modulators and Capacitor Charging Applications,” Power Electronics Handbook, pp. 593-640, 2018.
[9] E. Abramov, et al., “Low voltage sub-nanosecond pulsed current driver IC for high-resolution LIDAR applications,” APEC, pp. 708-715, 2018.
[10] K. Yashiki et al., “5 mW/Gbps hybrid-integrated Si-photonics-based optical I/O cores and their 25-Gbps/ch error-free operation with over 300-m MMF,” OFC 2015, Paper Th1G.1, 2015.
[11] K. Yashiki et al., “25-Gbps/ch error-free operation over 300-m MMF of low-power-consumption silicon-photonics-based chip-scale optical I/O cores,” IEICE Trans. Electron., in press
[12] Koichi Takemura, Mitsuru Kurihara, Toshinori Uemura, Akio Ukita, Kenichiro Yashiki, Kazuhiko Kurata, “Chip-scale packaging of hybrid-integrated Si photonic transceiver: Optical I/O core,” CPMT Symposium Japan (ICSJ) 2015 IEEE, pp. 191-194, 2015.
[13] Efficient Power Conversion Corp. (2017). Application Notes. [Online]. Available: http://epc-co.com/epc/Portals/0/epc/documents/product-training/Using_GaN_r4.pdf
[14] B. J. Baliga, “Gallium Nitride Devices for Power Electronic Applications”, vol. 28, no. 7, Semicond. Sci. & Technol., pp. 1-8, 2013.
[15] A. Lidow, et al., “GaN Transistors for Efficient Power Conversion,” 2nd Ed, John Wiley & Sons, West Sussex, UK, 2015.
[16] Efficient Power Conversion Corp. (2015). EPC2040 data sheet. [Online]. Available: epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC2040_datasheet.pdf
[17] V. Barkhordarian, “Power MOSFET basics,” International Rectifier, El Segundo, CA, Appnotes. [Online]. Available: www.irf.com/technicalinfo/appnotes/mosfet.pdf.
[18] M. S. Parihar, D. Ghosh, and A. Kranti, “Ultra low power junction less MOSFETs for subthreshold logic applications,” IEEE Trans. Electron Devices, vol. 60, no. 5, pp. 1540–1546, May 2013.
[19] Y. Ren, M. Xu, J. Zhou, and F. C. Lee, “Analytical loss model of power MOSFET,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 310–319, Mar. 2006.
[20] M. K. Song, et al., “A 20V 8.4W 20MHz four-phase GaN DC-DC converter with fully on-chip dual-SR bootstrapped GaN FET driver achieving 4ns constant propagation delay and 1ns switching rise time,” ISSCC Dig. Tech. Papers, pp. 302-303, Feb. 2015.
[21] X. Ke, et al., “A 3-to-40V 10-to-30MHz automotive-use GaN driver with active BST balancing and VSW dual-edge dead-time modulation achieving 8.3% efficiency improvement and 3.4ns constant propagation delay,” ISSCC Dig. Tech. Papers, pp. 302-303, Feb. 2016.
[22] X. Ke, et al., “A 10MHz 3-to-40V VIN Tri-Slope Gate Driving GaN DC-DC Converter with 40.5dBμV Spurious Noise Compression and 79.3% Ringing Suppression for Automotive Applications,” ISSCC, pp. 430-431, Feb. 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 具有最佳轉換比快速搜索方案的全積體多轉換比切換式電容直流對直流電壓轉換器
2. 具高效率的E類差動無線功率發射器藉電荷面積優化和差動誤差校準以實現零電壓切換
3. 應用於多裝置充電之具有自動切換斜率追蹤控制之6.78兆赫茲氮化鎵E類共振式無線電力傳輸發射器
4. 使用雙側穩壓控制於零電壓切換最佳化之準諧振反馳式轉換器
5. 67%輸出電壓漣波降低和真隨機噪聲注入堆疊式數位低壓差穩壓器,用於電源側通道攻擊保護
6. 應用於物聯網之具有高效率之時序降壓型直流對直流轉換器基於脈衝寬度調變及脈衝頻率調變無縫轉換控制
7. 帶有可調式電容技術的低輸出漣波和快速暫態響應 三級單電感三輸出電壓轉換器
8. 具有逆向導通校正技術之6.78兆赫茲氮化鎵差動式E類共振式無線電力傳輸系統
9. 主動諧振電路具有動態諧振週期控制技術之快速零電壓切換氮化鎵主動箝位返馳式轉換器
10. 增強波跟蹤控制型降壓電源轉換器的輕載效率
11. 動態充電電流調節技術利用精確電流控制和溫度控制技術之雙迴路以達到1.6倍快速的鋰離子充電技術且擁有高達99.6%的高準確充電電流
12. 具有正和負輸出的雙相串聯電容直流對直流轉換器
13. 電壓調節器具有自動校正之雙迴路可調式電壓技術
14. 應用於音訊放大器具弦波參考電壓追蹤功能之單電感雙極性輸出直流-直流電源轉換器
15. 具有自動匹配點搜索控制之零電壓切換與零電壓導數切換之6.78兆赫茲氮化鎵E類共振式無線電力傳輸系統