跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林玟伶
研究生(外文):Wen-Ling Lin
論文名稱:探討Rho GDP dissociation inhibitor α在PMA誘導K562細胞走向巨核球分化中扮演的角色
論文名稱(外文):To investigate the potential role of Rho GDP dissociation inhibitor α (RhoGDIα) in PMA-induced megakaryocytic differentiation of K562 cells
指導教授:林蔚靖
指導教授(外文):Wey-Jinq Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:58
中文關鍵詞:巨核球分化
外文關鍵詞:K562RhoGDIαp38 MAPK
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Mitogen-activated protein kinase (MAPK) 訊息傳遞路徑廣泛調控許多細胞功能,例如細胞生長、凋亡及分化。文獻中,Erk MAPK活化促進巨核球細胞系分化,p38 MAPK則具負調控作用。K562細胞為人類血球系分化的前驅細胞,受到PMA (phorbol 12-myristate 13-acetate) 誘導時,K562細胞走向巨核球系分化。過去實驗室研究發現蛋白精胺酸甲基轉移酶1 (protein arginine methyltransferase 1, PRMT1) 能經由選擇性活化p38α來抑制巨核球細胞系分化,但是PRMT1如何調控p38 MAPK活化目前尚不清楚。文獻指出p38 MAPK可由上游分子MAPKK、MAPKKK及small G protein,如Rho家族調控。而RhoGDIα (Rho GDP-dissociation factor ?? 可抑制Rho GTPases家族的活化,並且文獻報導指出RhoGDIα含有三個會被甲基化的精胺酸。因此本研究探討RhoGDIα是否參與調控巨核球分化,以及其甲基化可能的影響。
本研究以劉氏染色法,發現RhoGDIα可促進K562的巨核球分化,並在RhoGDIα缺失穩定細胞株中發現磷酸化p38增加。SB203580 (p38抑制劑) 則回復RhoGDIα缺失所降低的分化。而當p38α缺失時,RhoGDIα對分化的影響則消失,顯示RhoGDIα經由p38α MAPK調控巨核球分化。並且研究發現PRMT1可部分回復由RhoGDIα促進巨核球分化的現象。細胞中RhoGDIα的第111個及第152個精胺酸曾被報導可被甲基化,突變第111個或第152個精胺酸會降低部分RhoGDIα促進的巨核球分化。本研究為首次發現RhoGDIα參與調控巨核球系分化的角色。
The mitogen-activated protein kinase (MAPK) pathways regulate various cellular functions, including differentiation. Activation of Erk MAPK pathway promotes megakaryocytic (MK) differentiation and p38 MAPK pathway plays a negative role in MK differentiation. K562 is a multipotent human leukemia cell line which can be induced to differentiate into various lineages including megakaryocytes. Upon PMA (phorbol 12-myristate 13-acetate) treatment, K562 cells display characteristics of MK and are often used as a model cell line. Our previous study demonstrated that PRMT1 (protein arginine methyltransferase 1) inhibited PMA-induced MK differentiation of K562 cells via activation of p38? MAPK. However, the molecular mechanism is unclear. The activity of the p38 MAPK pathway is regulated by the upstream MAPKK and MAPKKK and small G proteins such as Rho family. The Rho GDP-dissociation factor ? (RhoGDI?? is known to inhibit activity of Rho GTPases and has been shown to contain three arginine residues that can be dimethylated.
This study showed that RhoGDI? plays a positive role in PMA-induced MK differentiation of K562 cells as demonstrated by changes in cytological characteristics. Activation of p38 was enhanced in RhoGDI? knockdown cells by Western blot analysis. Suppression of MK differentiation in RhoGDI? knockdown cells was reverted upon treatment of p38 inhibitor (SB203580). RhoGDI? could reverse the MK differentiation in p38β knockdown cells but not in p38? knockdown cells. In context with PRMT1, promotion of MK differentiation by RhoGDI? was reversed. Mutations at Arg111 or Arg152, which are known to be methylated in cells, abolished the promotion of MK differentiation by RhoGDI?? Together, our results suggest, for the first time, that RhoGDI? and the potential role of methylation regulates PMA-induced megakaryocytic differentiation of K562.
目 錄 ………………………………………………………… 1
縮 寫 表 ………………………………………………………… 2
圖次目錄 ………………………………………………………… 4
附圖目錄 ………………………………………………………… 4
中文摘要 ………………………………………………………… 5
英文摘要 ………………………………………………………… 6
緒 論 ………………………………………………………… 7
研究目標 ………………………………………………………… 16
實驗材料 ………………………………………………………… 17
實驗方法 ………………………………………………………… 21
結 果 ………………………………………………………… 29
討 論 ………………………………………………………… 36
參考文獻 ………………………………………………………… 39
圖 表 ………………………………………………………… 47
附 圖 ………………………………………………………… 58

1. Szalai, G., LaRue, A.C. & Watson, D.K. Molecular mechanisms of megakaryopoiesis. Cell Mol Life Sci 63, 2460-76 (2006).
2. Whalen, A.M., Galasinski, S.C., Shapiro, P.S., Nahreini, T.S. & Ahn, N.G. Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase. Mol Cell Biol 17, 1947-58 (1997).
3. Chang, Y., Bluteau, D., Debili, N. & Vainchenker, W. From hematopoietic stem cells to platelets. J Thromb Haemost 5 Suppl 1, 318-27 (2007).
4. Zhang, Y., Sun, S., Wang, Z., Thompson, A., Kaluzhny, Y., Zimmet, J. et al. Signaling by the Mpl receptor involves IKK and NF-kappaB. J Cell Biochem 85, 523-35 (2002).
5. Majka, M., Ratajczak, J., Villaire, G., Kubiczek, K., Marquez, L.A., Janowska-Wieczorek, A. et al. Thrombopoietin, but not cytokines binding to gp130 protein-coupled receptors, activates MAPKp42/44, AKT, and STAT proteins in normal human CD34+ cells, megakaryocytes, and platelets. Exp Hematol 30, 751-60 (2002).
6. Lozzio, C.B. & Lozzio, B.B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45, 321-34 (1975).
7. Tsiftsoglou, A.S., Pappas, I.S. & Vizirianakis, I.S. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther 100, 257-90 (2003).
8. Colamonici, O.R., Trepel, J.B. & Neckers, L.M. Phorbol ester enhances deoxynucleoside incorporation while inhibiting proliferation of K-562 cells. Cytometry 6, 591-6 (1985).
9. Tabilio, A., Pelicci, P.G., Vinci, G., Mannoni, P., Civin, C.I., Vainchenker, W. et al. Myeloid and megakaryocytic properties of K-562 cell lines. Cancer Res 43, 4569-74 (1983).
10. Raman, M., Chen, W. & Cobb, M.H. Differential regulation and properties of MAPKs. Oncogene 26, 3100-12 (2007).
11. Krishna, M. & Narang, H. The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65, 3525-44 (2008).
12. Racke, F.K., Lewandowska, K., Goueli, S. & Goldfarb, A.N. Sustained activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway is required for megakaryocytic differentiation of K562 cells. J Biol Chem 272, 23366-70 (1997).
13. Jiang, F., Jia, Y. & Cohen, I. Fibronectin- and protein kinase C-mediated activation of ERK/MAPK are essential for proplateletlike formation. Blood 99, 3579-84 (2002).
14. Jacquel, A., Herrant, M., Defamie, V., Belhacene, N., Colosetti, P., Marchetti, S. et al. A survey of the signaling pathways involved in megakaryocytic differentiation of the human K562 leukemia cell line by molecular and c-DNA array analysis. Oncogene 25, 781-94 (2006).
15. Chang, Y.I., Hua, W.K., Yao, C.L., Hwang, S.M., Hung, Y.C., Kuan, C.J. et al. Protein-arginine methyltransferase 1 suppresses megakaryocytic differentiation via modulation of the p38 MAPK pathway in K562 cells. J Biol Chem 285, 20595-606 (2010).
16. Feng, Y., Wen, J. & Chang, C.C. p38 Mitogen-activated protein kinase and hematologic malignancies. Arch Pathol Lab Med 133, 1850-6 (2009).
17. Cuenda, A. & Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773, 1358-75 (2007).
18. Raingeaud, J., Gupta, S., Rogers, J.S., Dickens, M., Han, J., Ulevitch, R.J. et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270, 7420-6 (1995).
19. Enslen, H., Raingeaud, J. & Davis, R.J. Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J Biol Chem 273, 1741-8 (1998).
20. Buchsbaum, R.J., Connolly, B.A. & Feig, L.A. Interaction of Rac exchange factors Tiam1 and Ras-GRF1 with a scaffold for the p38 mitogen-activated protein kinase cascade. Mol Cell Biol 22, 4073-85 (2002).
21. Wang, Z., Yang, H., Tachado, S.D., Capo-Aponte, J.E., Bildin, V.N., Koziel, H. et al. Phosphatase-mediated crosstalk control of ERK and p38 MAPK signaling in corneal epithelial cells. Invest Ophthalmol Vis Sci 47, 5267-75 (2006).
22. Liu, Q. & Hofmann, P.A. Protein phosphatase 2A-mediated cross-talk between p38 MAPK and ERK in apoptosis of cardiac myocytes. Am J Physiol Heart Circ Physiol 286, H2204-12 (2004).
23. Sasaki, T. & Takai, Y. The Rho small G protein family-Rho GDI system as a temporal and spatial determinant for cytoskeletal control. Biochem Biophys Res Commun 245, 641-5 (1998).
24. Dovas, A. & Couchman, J.R. RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J 390, 1-9 (2005).
25. Pertz, O. Spatio-temporal Rho GTPase signaling - where are we now? J Cell Sci 123, 1841-50 (2010).
26. Machacek, M., Hodgson, L., Welch, C., Elliott, H., Pertz, O., Nalbant, P. et al. Coordination of Rho GTPase activities during cell protrusion. Nature 461, 99-103 (2009).
27. Harnois, T., Constantin, B., Rioux, A., Grenioux, E., Kitzis, A. & Bourmeyster, N. Differential interaction and activation of Rho family GTPases by p210bcr-abl and p190bcr-abl. Oncogene 22, 6445-54 (2003).
28. McCarty, O.J., Larson, M.K., Auger, J.M., Kalia, N., Atkinson, B.T., Pearce, A.C. et al. Rac1 is essential for platelet lamellipodia formation and aggregate stability under flow. J Biol Chem 280, 39474-84 (2005).
29. Akbar, H., Kim, J., Funk, K., Cancelas, J.A., Shang, X., Chen, L. et al. Genetic and pharmacologic evidence that Rac1 GTPase is involved in regulation of platelet secretion and aggregation. J Thromb Haemost 5, 1747-55 (2007).
30. Flevaris, P., Li, Z., Zhang, G., Zheng, Y., Liu, J. & Du, X. Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK-dependent integrin outside-in retractile signaling pathway. Blood 113, 893-901 (2009).
31. Mulloy, J.C., Cancelas, J.A., Filippi, M.D., Kalfa, T.A., Guo, F. & Zheng, Y. Rho GTPases in hematopoiesis and hemopathies. Blood 115, 936-47 (2010).
32. Dransart, E., Olofsson, B. & Cherfils, J. RhoGDIs revisited: novel roles in Rho regulation. Traffic 6, 957-66 (2005).
33. Keep, N.H., Barnes, M., Barsukov, I., Badii, R., Lian, L.Y., Segal, A.W. et al. A modulator of rho family G proteins, rhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm. Structure 5, 623-33 (1997).
34. Hamada, K., Seto, A., Shimizu, T., Matsui, T., Takai, Y., Tsukita, S. et al. Crystallization and preliminary crystallographic studies of RhoGDI in complex with the radixin FERM domain. Acta Crystallogr D Biol Crystallogr 57, 889-90 (2001).
35. Dovas, A., Choi, Y., Yoneda, A., Multhaupt, H.A., Kwon, S.H., Kang, D. et al. Serine 34 phosphorylation of rho guanine dissociation inhibitor (RhoGDIalpha) links signaling from conventional protein kinase C to RhoGTPase in cell adhesion. J Biol Chem 285, 23296-308 (2010).
36. DerMardirossian, C., Rocklin, G., Seo, J.Y. & Bokoch, G.M. Phosphorylation of RhoGDI by Src regulates Rho GTPase binding and cytosol-membrane cycling. Mol Biol Cell 17, 4760-8 (2006).
37. DerMardirossian, C., Schnelzer, A. & Bokoch, G.M. Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol Cell 15, 117-27 (2004).
38. Guerrera, I.C., Keep, N.H. & Godovac-Zimmermann, J. Proteomics study reveals cross-talk between Rho guanidine nucleotide dissociation inhibitor 1 post-translational modifications in epidermal growth factor stimulated fibroblasts. J Proteome Res 6, 2623-30 (2007).
39. Boulter, E., Garcia-Mata, R., Guilluy, C., Dubash, A., Rossi, G., Brennwald, P.J. et al. Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol 12, 477-83 (2010).
40. Jiang, W.G., Watkins, G., Lane, J., Cunnick, G.H., Douglas-Jones, A., Mokbel, K. et al. Prognostic value of rho GTPases and rho guanine nucleotide dissociation inhibitors in human breast cancers. Clin Cancer Res 9, 6432-40 (2003).
41. Ishizaki, H., Togawa, A., Tanaka-Okamoto, M., Hori, K., Nishimura, M., Hamaguchi, A. et al. Defective chemokine-directed lymphocyte migration and development in the absence of Rho guanosine diphosphate-dissociation inhibitors alpha and beta. J Immunol 177, 8512-21 (2006).
42. Lee, Y.H. & Stallcup, M.R. Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Mol Endocrinol 23, 425-33 (2009).
43. Goulet, I., Gauvin, G., Boisvenue, S. & Cote, J. Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization. J Biol Chem 282, 33009-21 (2007).
44. Bedford, M.T. & Clarke, S.G. Protein arginine methylation in mammals: who, what, and why. Mol Cell 33, 1-13 (2009).
45. Bedford, M.T. Arginine methylation at a glance. J Cell Sci 120, 4243-6 (2007).
46. Tang, J., Kao, P.N. & Herschman, H.R. Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. J Biol Chem 275, 19866-76 (2000).
47. Zhang, X. & Cheng, X. Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11, 509-20 (2003).
48. Smith, J.J., Rucknagel, K.P., Schierhorn, A., Tang, J., Nemeth, A., Linder, M. et al. Unusual sites of arginine methylation in Poly(A)-binding protein II and in vitro methylation by protein arginine methyltransferases PRMT1 and PRMT3. J Biol Chem 274, 13229-34 (1999).
49. Yamagata, K., Daitoku, H., Takahashi, Y., Namiki, K., Hisatake, K., Kako, K. et al. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell 32, 221-31 (2008).
50. Sakamaki, J., Daitoku, H., Ueno, K., Hagiwara, A., Yamagata, K. & Fukamizu, A. Arginine methylation of BCL-2 antagonist of cell death (BAD) counteracts its phosphorylation and inactivation by Akt. Proc Natl Acad Sci U S A 108, 6085-90 (2011).
51. Pawlak, M.R., Scherer, C.A., Chen, J., Roshon, M.J. & Ruley, H.E. Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol Cell Biol 20, 4859-69 (2000).
52. Cimato, T.R., Tang, J., Xu, Y., Guarnaccia, C., Herschman, H.R., Pongor, S. et al. Nerve growth factor-mediated increases in protein methylation occur predominantly at type I arginine methylation sites and involve protein arginine methyltransferase 1. J Neurosci Res 67, 435-42 (2002).
53. Miyata, S., Mori, Y. & Tohyama, M. PRMT1 and Btg2 regulates neurite outgrowth of Neuro2a cells. Neurosci Lett 445, 162-5 (2008).
54. Lim, Y., Kwon, Y.H., Won, N.H., Min, B.H., Park, I.S., Paik, W.K. et al. Multimerization of expressed protein-arginine methyltransferases during the growth and differentiation of rat liver. Biochim Biophys Acta 1723, 240-7 (2005).
55. Yoshimatsu, M., Toyokawa, G., Hayami, S., Unoki, M., Tsunoda, T., Field, H.I. et al. Dysregulation of PRMT1 and PRMT6, Type I arginine methyltransferases, is involved in various types of human cancers. Int J Cancer 128, 562-73 (2011).
56. Kowenz-Leutz, E., Pless, O., Dittmar, G., Knoblich, M. & Leutz, A. Crosstalk between C/EBPbeta phosphorylation, arginine methylation, and SWI/SNF/Mediator implies an indexing transcription factor code. EMBO J 29, 1105-15 (2010).
57. Zhao, X., Jankovic, V., Gural, A., Huang, G., Pardanani, A., Menendez, S. et al. Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev 22, 640-53 (2008).
58. Severin, S., Ghevaert, C. & Mazharian, A. The mitogen-activated protein kinase signaling pathways: role in megakaryocyte differentiation. J Thromb Haemost 8, 17-26 (2011).
59. Kaushansky, K. The molecular mechanisms that control thrombopoiesis. J Clin Invest 115, 3339-47 (2005).
60. Lavoie, J.N., L'Allemain, G., Brunet, A., Muller, R. & Pouyssegur, J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 271, 20608-16 (1996).
61. Lee, C.H., Yun, H.J., Kang, H.S. & Kim, H.D. ERK/MAPK pathway is required for changes of cyclin D1 and B1 during phorbol 12-myristate 13-acetate-induced differentiation of K562 cells. IUBMB Life 48, 585-91 (1999).
62. Sun, S., Zimmet, J.M., Toselli, P., Thompson, A., Jackson, C.W. & Ravid, K. Overexpression of cyclin D1 moderately increases ploidy in megakaryocytes. Haematologica 86, 17-23 (2001).
63. Conde, I., Pabon, D., Jayo, A., Lastres, P. & Gonzalez-Manchon, C. Involvement of ERK1/2, p38 and PI3K in megakaryocytic differentiation of K562 cells. Eur J Haematol 84, 430-40 (2010).
64. Lim, L., Manser, E., Leung, T. & Hall, C. Regulation of phosphorylation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphorylation signalling pathways. Eur J Biochem 242, 171-85 (1996).
65. Semenova, M.M., Maki-Hokkonen, A.M., Cao, J., Komarovski, V., Forsberg, K.M., Koistinaho, M. et al. Rho mediates calcium-dependent activation of p38alpha and subsequent excitotoxic cell death. Nat Neurosci 10, 436-43 (2007).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 石弘毅:〈台灣「王爺」信仰的歷史意義〉,收錄《歷史月刊》第87期,1995年4
2. 石奕龍:〈閩臺民間信仰的異同比較〉,載《臺灣源流》,臺灣省各姓淵源研究學會
3. 朱建明:〈上海城隍廟的三巡會祭祀〉,載《民俗曲藝》,2000年5月。
4. 江寶釵:〈大稻埕、霞海城隍與靈安社〉,載《民俗曲藝》47期,1987年6月。
5. 舟子:〈記定海城隍廟與祖印寺〉,載《寧波同鄉》186期,1984年1月,頁6至頁
6. 何培夫:〈臺灣城隍信仰之意義〉,載《史學》第2期,成大歷史學學會出版,1975
7. 余光弘:〈澎湖的移民與開發〉,《西瀛風物》創刊號,1996年6月,頁45至頁61。
8. 吳心荷:〈臺灣傳統廟宇建築裝飾之美〉,《重中論集》第2期(2002年6月),頁
9. 吳福助:〈對聯藝術之美〉,《明道文藝》第323期(2003年2月),頁116-128
10. 吳建華:〈用方言判讀舊詩的平仄聲〉,《中國語文》第554期(2003年8月),頁
11. 呂健忠:〈為兒童劇評催生─《城隍爺傳奇》觀後感〉,載《表演藝術》,1994年2
12. 呂理政:〈宗教信仰與社會生活—談臺灣民間信仰的幾個面相〉,載《民俗曲藝》
13. 宋光宇:〈霞海城隍因何威靈赫赫〉,載《民俗曲藝》60期,1989年7月。
14. 李堅萍:〈客家廟宇純淨簡約的工藝形式之美〉,《六堆雜誌》第113期(2006年2
15. 李祖基:〈城隍信仰與臺灣歷史〉,載《臺灣源流》,臺灣省各姓淵源研究學會(12),