|
1. Szalai, G., LaRue, A.C. & Watson, D.K. Molecular mechanisms of megakaryopoiesis. Cell Mol Life Sci 63, 2460-76 (2006). 2. Whalen, A.M., Galasinski, S.C., Shapiro, P.S., Nahreini, T.S. & Ahn, N.G. Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase. Mol Cell Biol 17, 1947-58 (1997). 3. Chang, Y., Bluteau, D., Debili, N. & Vainchenker, W. From hematopoietic stem cells to platelets. J Thromb Haemost 5 Suppl 1, 318-27 (2007). 4. Zhang, Y., Sun, S., Wang, Z., Thompson, A., Kaluzhny, Y., Zimmet, J. et al. Signaling by the Mpl receptor involves IKK and NF-kappaB. J Cell Biochem 85, 523-35 (2002). 5. Majka, M., Ratajczak, J., Villaire, G., Kubiczek, K., Marquez, L.A., Janowska-Wieczorek, A. et al. Thrombopoietin, but not cytokines binding to gp130 protein-coupled receptors, activates MAPKp42/44, AKT, and STAT proteins in normal human CD34+ cells, megakaryocytes, and platelets. Exp Hematol 30, 751-60 (2002). 6. Lozzio, C.B. & Lozzio, B.B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45, 321-34 (1975). 7. Tsiftsoglou, A.S., Pappas, I.S. & Vizirianakis, I.S. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther 100, 257-90 (2003). 8. Colamonici, O.R., Trepel, J.B. & Neckers, L.M. Phorbol ester enhances deoxynucleoside incorporation while inhibiting proliferation of K-562 cells. Cytometry 6, 591-6 (1985). 9. Tabilio, A., Pelicci, P.G., Vinci, G., Mannoni, P., Civin, C.I., Vainchenker, W. et al. Myeloid and megakaryocytic properties of K-562 cell lines. Cancer Res 43, 4569-74 (1983). 10. Raman, M., Chen, W. & Cobb, M.H. Differential regulation and properties of MAPKs. Oncogene 26, 3100-12 (2007). 11. Krishna, M. & Narang, H. The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65, 3525-44 (2008). 12. Racke, F.K., Lewandowska, K., Goueli, S. & Goldfarb, A.N. Sustained activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway is required for megakaryocytic differentiation of K562 cells. J Biol Chem 272, 23366-70 (1997). 13. Jiang, F., Jia, Y. & Cohen, I. Fibronectin- and protein kinase C-mediated activation of ERK/MAPK are essential for proplateletlike formation. Blood 99, 3579-84 (2002). 14. Jacquel, A., Herrant, M., Defamie, V., Belhacene, N., Colosetti, P., Marchetti, S. et al. A survey of the signaling pathways involved in megakaryocytic differentiation of the human K562 leukemia cell line by molecular and c-DNA array analysis. Oncogene 25, 781-94 (2006). 15. Chang, Y.I., Hua, W.K., Yao, C.L., Hwang, S.M., Hung, Y.C., Kuan, C.J. et al. Protein-arginine methyltransferase 1 suppresses megakaryocytic differentiation via modulation of the p38 MAPK pathway in K562 cells. J Biol Chem 285, 20595-606 (2010). 16. Feng, Y., Wen, J. & Chang, C.C. p38 Mitogen-activated protein kinase and hematologic malignancies. Arch Pathol Lab Med 133, 1850-6 (2009). 17. Cuenda, A. & Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773, 1358-75 (2007). 18. Raingeaud, J., Gupta, S., Rogers, J.S., Dickens, M., Han, J., Ulevitch, R.J. et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270, 7420-6 (1995). 19. Enslen, H., Raingeaud, J. & Davis, R.J. Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J Biol Chem 273, 1741-8 (1998). 20. Buchsbaum, R.J., Connolly, B.A. & Feig, L.A. Interaction of Rac exchange factors Tiam1 and Ras-GRF1 with a scaffold for the p38 mitogen-activated protein kinase cascade. Mol Cell Biol 22, 4073-85 (2002). 21. Wang, Z., Yang, H., Tachado, S.D., Capo-Aponte, J.E., Bildin, V.N., Koziel, H. et al. Phosphatase-mediated crosstalk control of ERK and p38 MAPK signaling in corneal epithelial cells. Invest Ophthalmol Vis Sci 47, 5267-75 (2006). 22. Liu, Q. & Hofmann, P.A. Protein phosphatase 2A-mediated cross-talk between p38 MAPK and ERK in apoptosis of cardiac myocytes. Am J Physiol Heart Circ Physiol 286, H2204-12 (2004). 23. Sasaki, T. & Takai, Y. The Rho small G protein family-Rho GDI system as a temporal and spatial determinant for cytoskeletal control. Biochem Biophys Res Commun 245, 641-5 (1998). 24. Dovas, A. & Couchman, J.R. RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J 390, 1-9 (2005). 25. Pertz, O. Spatio-temporal Rho GTPase signaling - where are we now? J Cell Sci 123, 1841-50 (2010). 26. Machacek, M., Hodgson, L., Welch, C., Elliott, H., Pertz, O., Nalbant, P. et al. Coordination of Rho GTPase activities during cell protrusion. Nature 461, 99-103 (2009). 27. Harnois, T., Constantin, B., Rioux, A., Grenioux, E., Kitzis, A. & Bourmeyster, N. Differential interaction and activation of Rho family GTPases by p210bcr-abl and p190bcr-abl. Oncogene 22, 6445-54 (2003). 28. McCarty, O.J., Larson, M.K., Auger, J.M., Kalia, N., Atkinson, B.T., Pearce, A.C. et al. Rac1 is essential for platelet lamellipodia formation and aggregate stability under flow. J Biol Chem 280, 39474-84 (2005). 29. Akbar, H., Kim, J., Funk, K., Cancelas, J.A., Shang, X., Chen, L. et al. Genetic and pharmacologic evidence that Rac1 GTPase is involved in regulation of platelet secretion and aggregation. J Thromb Haemost 5, 1747-55 (2007). 30. Flevaris, P., Li, Z., Zhang, G., Zheng, Y., Liu, J. & Du, X. Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK-dependent integrin outside-in retractile signaling pathway. Blood 113, 893-901 (2009). 31. Mulloy, J.C., Cancelas, J.A., Filippi, M.D., Kalfa, T.A., Guo, F. & Zheng, Y. Rho GTPases in hematopoiesis and hemopathies. Blood 115, 936-47 (2010). 32. Dransart, E., Olofsson, B. & Cherfils, J. RhoGDIs revisited: novel roles in Rho regulation. Traffic 6, 957-66 (2005). 33. Keep, N.H., Barnes, M., Barsukov, I., Badii, R., Lian, L.Y., Segal, A.W. et al. A modulator of rho family G proteins, rhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm. Structure 5, 623-33 (1997). 34. Hamada, K., Seto, A., Shimizu, T., Matsui, T., Takai, Y., Tsukita, S. et al. Crystallization and preliminary crystallographic studies of RhoGDI in complex with the radixin FERM domain. Acta Crystallogr D Biol Crystallogr 57, 889-90 (2001). 35. Dovas, A., Choi, Y., Yoneda, A., Multhaupt, H.A., Kwon, S.H., Kang, D. et al. Serine 34 phosphorylation of rho guanine dissociation inhibitor (RhoGDIalpha) links signaling from conventional protein kinase C to RhoGTPase in cell adhesion. J Biol Chem 285, 23296-308 (2010). 36. DerMardirossian, C., Rocklin, G., Seo, J.Y. & Bokoch, G.M. Phosphorylation of RhoGDI by Src regulates Rho GTPase binding and cytosol-membrane cycling. Mol Biol Cell 17, 4760-8 (2006). 37. DerMardirossian, C., Schnelzer, A. & Bokoch, G.M. Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol Cell 15, 117-27 (2004). 38. Guerrera, I.C., Keep, N.H. & Godovac-Zimmermann, J. Proteomics study reveals cross-talk between Rho guanidine nucleotide dissociation inhibitor 1 post-translational modifications in epidermal growth factor stimulated fibroblasts. J Proteome Res 6, 2623-30 (2007). 39. Boulter, E., Garcia-Mata, R., Guilluy, C., Dubash, A., Rossi, G., Brennwald, P.J. et al. Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol 12, 477-83 (2010). 40. Jiang, W.G., Watkins, G., Lane, J., Cunnick, G.H., Douglas-Jones, A., Mokbel, K. et al. Prognostic value of rho GTPases and rho guanine nucleotide dissociation inhibitors in human breast cancers. Clin Cancer Res 9, 6432-40 (2003). 41. Ishizaki, H., Togawa, A., Tanaka-Okamoto, M., Hori, K., Nishimura, M., Hamaguchi, A. et al. Defective chemokine-directed lymphocyte migration and development in the absence of Rho guanosine diphosphate-dissociation inhibitors alpha and beta. J Immunol 177, 8512-21 (2006). 42. Lee, Y.H. & Stallcup, M.R. Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Mol Endocrinol 23, 425-33 (2009). 43. Goulet, I., Gauvin, G., Boisvenue, S. & Cote, J. Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization. J Biol Chem 282, 33009-21 (2007). 44. Bedford, M.T. & Clarke, S.G. Protein arginine methylation in mammals: who, what, and why. Mol Cell 33, 1-13 (2009). 45. Bedford, M.T. Arginine methylation at a glance. J Cell Sci 120, 4243-6 (2007). 46. Tang, J., Kao, P.N. & Herschman, H.R. Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. J Biol Chem 275, 19866-76 (2000). 47. Zhang, X. & Cheng, X. Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11, 509-20 (2003). 48. Smith, J.J., Rucknagel, K.P., Schierhorn, A., Tang, J., Nemeth, A., Linder, M. et al. Unusual sites of arginine methylation in Poly(A)-binding protein II and in vitro methylation by protein arginine methyltransferases PRMT1 and PRMT3. J Biol Chem 274, 13229-34 (1999). 49. Yamagata, K., Daitoku, H., Takahashi, Y., Namiki, K., Hisatake, K., Kako, K. et al. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell 32, 221-31 (2008). 50. Sakamaki, J., Daitoku, H., Ueno, K., Hagiwara, A., Yamagata, K. & Fukamizu, A. Arginine methylation of BCL-2 antagonist of cell death (BAD) counteracts its phosphorylation and inactivation by Akt. Proc Natl Acad Sci U S A 108, 6085-90 (2011). 51. Pawlak, M.R., Scherer, C.A., Chen, J., Roshon, M.J. & Ruley, H.E. Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol Cell Biol 20, 4859-69 (2000). 52. Cimato, T.R., Tang, J., Xu, Y., Guarnaccia, C., Herschman, H.R., Pongor, S. et al. Nerve growth factor-mediated increases in protein methylation occur predominantly at type I arginine methylation sites and involve protein arginine methyltransferase 1. J Neurosci Res 67, 435-42 (2002). 53. Miyata, S., Mori, Y. & Tohyama, M. PRMT1 and Btg2 regulates neurite outgrowth of Neuro2a cells. Neurosci Lett 445, 162-5 (2008). 54. Lim, Y., Kwon, Y.H., Won, N.H., Min, B.H., Park, I.S., Paik, W.K. et al. Multimerization of expressed protein-arginine methyltransferases during the growth and differentiation of rat liver. Biochim Biophys Acta 1723, 240-7 (2005). 55. Yoshimatsu, M., Toyokawa, G., Hayami, S., Unoki, M., Tsunoda, T., Field, H.I. et al. Dysregulation of PRMT1 and PRMT6, Type I arginine methyltransferases, is involved in various types of human cancers. Int J Cancer 128, 562-73 (2011). 56. Kowenz-Leutz, E., Pless, O., Dittmar, G., Knoblich, M. & Leutz, A. Crosstalk between C/EBPbeta phosphorylation, arginine methylation, and SWI/SNF/Mediator implies an indexing transcription factor code. EMBO J 29, 1105-15 (2010). 57. Zhao, X., Jankovic, V., Gural, A., Huang, G., Pardanani, A., Menendez, S. et al. Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev 22, 640-53 (2008). 58. Severin, S., Ghevaert, C. & Mazharian, A. The mitogen-activated protein kinase signaling pathways: role in megakaryocyte differentiation. J Thromb Haemost 8, 17-26 (2011). 59. Kaushansky, K. The molecular mechanisms that control thrombopoiesis. J Clin Invest 115, 3339-47 (2005). 60. Lavoie, J.N., L'Allemain, G., Brunet, A., Muller, R. & Pouyssegur, J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 271, 20608-16 (1996). 61. Lee, C.H., Yun, H.J., Kang, H.S. & Kim, H.D. ERK/MAPK pathway is required for changes of cyclin D1 and B1 during phorbol 12-myristate 13-acetate-induced differentiation of K562 cells. IUBMB Life 48, 585-91 (1999). 62. Sun, S., Zimmet, J.M., Toselli, P., Thompson, A., Jackson, C.W. & Ravid, K. Overexpression of cyclin D1 moderately increases ploidy in megakaryocytes. Haematologica 86, 17-23 (2001). 63. Conde, I., Pabon, D., Jayo, A., Lastres, P. & Gonzalez-Manchon, C. Involvement of ERK1/2, p38 and PI3K in megakaryocytic differentiation of K562 cells. Eur J Haematol 84, 430-40 (2010). 64. Lim, L., Manser, E., Leung, T. & Hall, C. Regulation of phosphorylation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphorylation signalling pathways. Eur J Biochem 242, 171-85 (1996). 65. Semenova, M.M., Maki-Hokkonen, A.M., Cao, J., Komarovski, V., Forsberg, K.M., Koistinaho, M. et al. Rho mediates calcium-dependent activation of p38alpha and subsequent excitotoxic cell death. Nat Neurosci 10, 436-43 (2007).
|