中文部分:
1. 毛良虎 (2016),技術經濟學,大陸:北京大學出版社。
2. 台灣電力公司 (2018),電價表,台灣電力公司。
https://www.taipower.com.tw/upload/238/2018070210412196443.pdf
3. 白子玄與邱裕鈞 (2017),預約抽籤式之鐵路訂票尋優演算法,運輸學刊,29(3),281-310。
4. 李葆文 (2016),似非而是--創新思維下的設備管理,中國:冶金工業出版社。
5. 李馨 (2016),資料庫系統管理與實作:Access+Excel 商務應用(2016版), 臺灣:博碩文化。
6. 吳彥儒(2015),重新認識我國推廣再生能源的效益與代價,台灣經濟研究月刊,38(11),108-115。
7. 卓金和與孫廷瑞 (2013),我國 2020 年主要發電技術之均化成本估算,行政院原子能委員會核能研究所,網址:http://eip.iner.gov.tw/msn.aspx?datatype=YW5hbHlzaXM=&id=MzE=。
8. 施威銘研究室 (2011),資料庫理論與實務:使用Access 2010,臺灣:旗標科技股份有限公司。
9. 孫麗萍 (2013),技術經濟分析(第2版),中國: 科學出版社。
10. 袁正達、葛復光、孫廷瑞、卓金和與柴蕙質 (2014),各國核能發電均化成本之比較,行政院原子能委員會核能研究所,網址:http://eip.iner.gov.tw/msn.aspx?datatype=YW5hbHlzaXM=&id=Mjk=。
11. 徐世輝 (2013),應用統計學(第四版),臺灣:前程文化總經銷。
12. 張亞清、張榮芳與陳泳志 (2018),使用蒙地卡羅模擬法進行虛擬電廠長期運轉效能評估之研究,正修學報,頁27-41。
13. 黃郁青 (2018),儲能設施是否可以負擔?,行政院原子能委員會核能研究所,網址:http://eip.iner.gov.tw/msn.aspx?datatype=YW5hbHlzaXM=&id=MTYy。
14. 楊靜與鄢飛 (2018),企業管理與技術經濟分析,中國: 天津大學出版社。
15. 董凱、江輝、黃澤榮與鐘浩 (2010),運用成本效益分析的風/柴/儲能系統規劃方法,電力系統及其自動化學報,22(3),67-72。
16. 經濟部能源局再生能源資訊網 (2017),綠能科技產業創新推動方案,網址:https://www.re.org.tw/information/more.aspx?cid=192&id=769。
17. 經濟部能源局 (2019),能源局統計月報,經濟部能源局。
18. 劉玉章、曾育貞、呂永方、沈錦昌與鍾人傑 (2015),電網級儲能技術研發現況與進度,臺灣能源期刊,2(2),169-190。
19. 冀晨輝與吳丹 (2018),技術經濟學,中國: 河海大學出版社。
20. 鍾明展 (2016),醫院新舊工程不斷電系統案例比較探討,朝陽科技大學營建工程系碩士論文。21. 魏華洲 (2014),電網儲能技術應用潛力,行政院原子能委員會核能研究所,網址:https://km.twenergy.org.tw/KnowledgeFree/knowledge_more?id=1146。
22. 關曉慧與呂躍剛 (2011),間歇性可再生能源發電中的儲能技術研究,能源與節能,2,56-60。
英文部分:
1. Abdon, A., Zhang, X. J., Parra, D., Patel, M. K., Bauer, C. & Worlitschek, J. (2017), Techno-economic and environmental assessment of stationary electricity storage technologies for different time scales, Energy, 139, 1173-1187.
2. Akhil, A. A., Huff, G., Currier, A. B., Hernandez, J., Bender, D. A., Kaun, B. C., Rastler, D. M., Chen, S. B., Cotter, A. L., Bradshaw, D. T., Gauntlett, W. D., Eyer, J., Olinsky-Paul, T., Ellison, M. & Schoenung, S. (2016), DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA, Sandia National Laboratories.
3. https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2016/169180.pdf
4. Andika, R., Kim, Y., Yoon, S. H., Kim, D. H., Choi, J. S. & Lee, M. (2017), Techno-economic assessment of technological improvements in thermal energy storage of concentrated solar power, Solar Energy, 157, 552-558.
5. Ardani, K., O'Shaughnessy, E., Fu, R., McClurg, C., Huneycutt, J. & Margolis, R. (2017), Installed Cost Benchmarks and Development Barriers for Residential Solar Photovoltaics with Energy Storage: Q1 2016, National Renewable Energy Laboratory.
https://www.nrel.gov/docs/fy17osti/67474.pdf
6. Argyrou, M. C., Christodoulides, P. & Kalogirou, S. A. (2018), Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications, Renewable and Sustainable Energy Reviews, 94, 804-821.
7. Atherton, J., Sharma, R. & Salgado, J. (2017), Techno-economic analysis of energy storage systems for application in wind farms, Energy, 135, 540-552.
8. Bhattacharya, M., Paramati, S. R., Ozturk, I. & Bhattacharya, S. (2016), The effect of renewable energy consumption on economic growth: Evidence from top 38 countries, Applied Energy, 162, 733-741.
9. Cali, U., Erdogan, N., Kucuksari, S. & Argin, M. (2018), Techno-economic analysis of high potential offshore wind farm locations in Turkey, Energy Strategy Reviews, 22, 325-336.
10. Caralis, G., Christakopoulos, T., Karellas, S. & Gao, Z. (2019), Analysis of energy storage systems to exploit wind energy curtailment in Crete, Renewable and Sustainable Energy Reviews, 103, 122-139.
11. Comodi, G., Carducci, F., Sze, J. Y., Balamurugan, N. & Romagnoli, A. (2017), Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies, Energy, 121, 676-694.
12. Electric Power Research Institute (2013), Cost-Effectiveness of Energy Storage in California, Electric Power Research Institute.
http://large.stanford.edu/courses/2013/ph240/cabrera1/docs/3002001162.pdf
13. Eyer, J. & Corey, G. (2010), Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide, Sandia National Laboratories.
14. https://www.sandia.gov/ess-ssl/publications/SAND2010-0815.pdf
15. Gu, Y., Zhang, X., Are Myhren, J., Han, M., Chen, X. & Yuan, Y. (2018), Techno-economic analysis of a solar photovoltaic/thermal (PV/T) concentrator for building application in Sweden using Monte Carlo method, Energy Conversion and Management, 165, 8-24.
16. IEA (2014), Technology Roadmap: Energy Storage, International Energy Agency.
https://www.iea.org/publications/freepublications/publication/TechnologyRoadmapEnergystorage.pdf
17. IEA (2017), World Energy Balances 2017, International Energy Agency.
18. IRENA (2017), Electricity Storage and Renewables: Costs and Markets to 2030, International Renewable Energy Agency.
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Oct/IRENA_Electricity_Storage_Costs_2017.pdf
19. Islam, M. T., Huda, N. & Saidur, R. (2019), Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia, Renewable Energy, 140, 789-806.
20. Kapila, S., Oni, A. O. & Kumar, A. (2017), The development of techno-economic models for large-scale energy storage systems, Energy, 140, 656-672.
21. KEMA (2012), ES-SelectTM Documentation and User’s Manual, KEMA.
https://www.sandia.gov/ess-ssl/ESSelectUpdates/ES-Select_Documentation_and_User_Manual-VER_2-2013.pdf
22. Laurischkat, K. & Jandt, D. (2018), Techno-economic analysis of sustainable mobility and energy solutions consisting of electric vehicles, photovoltaic systems and battery storages, Journal of Cleaner Production, 179, 642-661.
23. Lazard (2016), Lazard’s Levelized Cost of Storage Analysis-Version 2.0, Lazard.
https://www.lazard.com/media/438042/lazard-levelized-cost-of-storage-v20.pdf
24. Lazard (2017), Lazard’s Levelized Cost of Storage Analysis-Version 3.0, Lazard.
https://www.lazard.com/media/450338/lazard-levelized-cost-of-storage-version-30.pdf
25. Lazard (2018), Lazard’s Levelized Cost of Storage Analysis-Version 4.0, Lazard.
https://www.lazard.com/media/450774/lazards-levelized-cost-of-storage-version-40-vfinal.pdf
26. Li, Q., Tehrani, S. S. M. & Taylor, R. A. (2017), Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage, Energy, 121, 220-237.
27. Lin, L., Shah, A., Keener, H. & Li, Y. (2019), Techno-economic analyses of solid-state anaerobic digestion and composting of yard trimmings, Waste Management, 85, 405-416.
28. Lorenzi, G., da Silva Vieira, R., Santos Silva, C. A. & Martin, A. (2019), Techno-economic analysis of utility-scale energy storage in island settings, Journal of Energy Storage, 21, 691-705.
29. Mankiw, G. (2014),經濟學原理(四版,王銘正譯),台灣:高立圖書。(原著第七版出版於2014年)
30. Nikolaidis, P. & Poullikkas, A. (2018), Cost metrics of electrical energy storage technologies in potential power system operations, Sustainable Energy Technologies and Assessments, 25, 43-59.
31. Nolting, L. & Praktiknjo, A. (2019), Techno-economic analysis of flexible heat pump controls, Applied Energy, 238, 1417-1433.
32. Park, C. S. (2016), Contemporary Engineering Economics(Sixth ed.&Global ed.), England: Pearson.
33. Pillot, B., de Siqueira, S. & Dias, J. B. (2018), Grid parity analysis of distributed PV generation using Monte Carlo approach: The Brazilian case, Renewable Energy, 127, 974-988.
34. Rohit, A. K. & Rangnekar, S. (2017), An overview of energy storage and its importance in Indian renewable energy sector: Part II – energy storage applications, benefits and market potential, Journal of Energy Storage, 13, 447-456.
35. Schoenung, S. M. (2011), Energy Storage System Cost Update, Sandia National Laboratories.
https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2011/112730.pdf
36. Schoenung, S. M. & Hassenzahl, W. V. (2003), Long- vs. Short-Term Energy Storage Technologies Analysis, Sandia National Laboratories.
https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2003/032783.pdf
37. Sidhu, A. S., Pollitt, M. G. & Anaya, K. L. (2018), A social cost benefit analysis of grid-scale electrical energy storage projects: A case study, Applied Energy, 212, 881-894.
38. Thaker, S., Olufemi Oni, A. & Kumar, A. (2017), Techno-economic evaluation of solar-based thermal energy storage systems, Energy Conversion and Management, 153, 423-434.
39. Vossos, V., Gerber, D., Bennani, Y., Brown, R. & Marnay, C. (2018), Techno-economic analysis of DC power distribution in commercial buildings, Applied Energy, 230, 663-678.
40. Wang, L., Pan, B., Gao, Y., Li, C., Ye, J., Yang, L. & Zhang, X. (2019), Efficient membrane microalgal harvesting: Pilot-scale performance and techno-economic analysis, Journal of Cleaner Production, 218, 83-95.
41. Xie, C. P., Hong, Y., Ding, Y. L., Li, Y. L. & Radcliffe, J. (2018), An economic feasibility assessment of decoupled energy storage in the UK: With liquid air energy storage as a case study, Applied Energy, 225, 244-257.
42. Zafeiriou, E., Arabatzis, G. & Koutroumanidis, T. (2011), The fuelwood market in Greece: An empirical approach, Renewable and Sustainable Energy Reviews, 15(6), 3008-3018.
43. Zaroni, H., Maciel, L. B., Carvalho, D. B. & Pamplona, E. d. O. (2019), Monte Carlo Simulation approach for economic risk analysis of an emergency energy generation system, Energy, 172, 498-508.
44. Zhu, K., Li, X., Campana, P. E., Li, H. & Yan, J. (2018), Techno-economic feasibility of integrating energy storage systems in refrigerated warehouses, Applied Energy, 216, 348-357.