跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/09 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃裕婕
研究生(外文):Yu-Chieh Huang
論文名稱:電池設計及操作條件對全釩液流電池性能影響之模擬研究
論文名稱(外文):Modeling the effects of battery design and operating condition on the performance of all-vanadium redox flow batteries
指導教授:陳永松陳永松引用關係
指導教授(外文):Yong-Song Chen
口試委員:謝錦隆許寧逸
口試日期:2015-07-06
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程學系暨研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:105
中文關鍵詞:全釩氧化還原液流電池電解液流場設計局部電流密度
外文關鍵詞:All-vanadium redox flow batterylocal current densityelectrolyteflow field design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:579
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
全釩氧化還原液流電池(以下簡稱全釩電池)近年來已應用於再生能源,與太陽光電發電及風力發電機結合,以作為平衡負載及儲能之用。全釩電池具有較低之電流密度,因此需將其應用於較大之碳氈電極則可提升其電流密度及電池之性能。當碳氈電極之活性區大,電池性能會受到電解液分佈之影響,而其電池之設計及操作條件皆會影響電解液分佈之均勻性,因此本研究探討電池設計和操作條件對電解液分佈及電池性能的影響。
本研究第一部分是以模擬方式探討支流設計對電解液在碳氈電極流動均勻性的影響。由於支流設計參數繁多,本研究對支流設計之探討主要著重於主支流及次支流的設計。模擬結果顯示,主支流設計對電解液分佈之影響較為顯著。第二部分則先以小面積之碳氈電極模型進行分析,並與參考文獻之實驗數據進行比對,探討模擬之可行性。接著以較大面積之碳氈電極進行不同操作條件對濃度分佈及局部電流密度之探討。模擬結果表示,流率較高且操作電流密度較低,濃度分佈及電流密度分佈皆為較均勻。第三部分為探討石墨板之無流道及直向流道設計於不同操作條件下對電池性能之影響。由結果得知,其流道設計寬度較小且深度越深,能有較佳之電池性能。

All-vanadium redox flow batteries (VRFB) are currently used for load leveling, peak shaving, and energy storing in renewable energy systems (e.g. solar and wind). The VRFB has low current density, so it requires a larger active area of the carbon felt electrode in practical applications. When the active area is large, battery performance could be affected by electrolyte distribution, which is related to battery design and operating condition. As a results, understanding the effect of battery design and operating condition on electrolyte distribution and battery performance is essential in the development of VRFBs.
The first part of this study was to simulate the electrolyte distribution inside the battery. The stream line, velocity field, and pressure distribution of electrolyte within different distribution channel designs were investigated. Modeling results showed that the primary distribution channel has a significant impact on electrolyte distribution within the active area. In the second part, a mathematical model which can describe local current density was developed and calibrated using experimental data. Then the effect of operating condition on electrolyte concentration and local current density was studied using the calibrated model. The results showed that higher electrolyte flow rate and the lower operating current density can improve electrolyte utilization and battery performance. In the third part, the effect of flow channel design on battery performance was investigated. The results showed that more channel number and deeper channel depth improved battery performance.

摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 XII
符號說明 XIII
第一章 緒論 1
1-1研究背景 1
1-2儲能系統簡介 2
1-2-1物理性儲能系統 2
1-2-2化學性儲能系統 4
1-3全釩液流電池系統簡介 9
1-3-1全釩電池充放電之電化學反應 9
1-3-2全釩電池之架構 10
1-3-3全釩電池之特性 11
1-3-4全釩電池於國際上之應用 12
1-3-5全釩電池之性能曲線 14
1-3-6全釩電池之電荷狀態 17
1-3-7全釩電池之效率 17
第二章 文獻回顧 19
2-1質子交換膜之研究 19
2-2電極材料之研究 21
2-3全釩電池操作模式 23
2-4全釩電池之流道設計 25
2-5全釩電池局部電流密度分佈 29
2-6研究動機 31
2-7研究目的 33
第三章 研究方法 34
3-1全釩電池研究流程及模擬架構 34
3-2模擬分析物理量簡介 35
3-2-1二級電流分佈(Secondary Current Distribution) 36
3-2-2三級電流分佈能斯特-普朗克(Tertiary Current Distribution, Nernst-Planck) 36
3-2-3自由與多孔介質流(Free and Porous Media Flow) 37
3-3支流設計對電解液分佈之影響 37
3-3-1模型假設 38
3-3-2統御方程式 38
3-3-3邊界條件 39
3-3-4模型參數-模型A之基本模型設計 39
3-3-5模型參數-模型B之次支流數目減半 39
3-3-6模型參數-模型C之主支流數目減半 40
3-3-7模型參數-模型D之整合模型B與模型C 40
3-3-8網格生成 41
3-4不同操作條件對局部電流密度分佈之影響 44
3-4-1模型假設 45
3-4-2統御方程式 46
3-4-3邊界條件 49
3-5石墨板之流道設計對電池性能之影響 49
3-5-1無流道之幾何模型 50
3-5-2直向流道之幾何模型 50
3-5-3模型假設 52
3-5-4統御方程式 53
3-5-5邊界條件 53
第四章 結果與討論 54
4-1流場設計對電解液分佈影響之模擬 54
4-1-1流線分佈 54
4-1-2速度分佈 56
4-1-3壓力分佈 58
4-2模擬驗證 60
4-3網格比較 62
4-3-1四面體網格及六面體網格之探討 62
4-3-2電極厚度網格節點數之探討 65
4-3-3電極長度網格節點數之探討 66
4-3-4電極寬度網格節點數之探討 67
4-4不同操作條件之較大面積之碳氈對局部電流密度的影響 68
4-4-1不同操作條件之濃度分佈 69
4-4-2不同操作條件之局部電流密度分佈 70
4-5石墨板之流道設計對電池性能的影響 71
4-5-1無流道及直向流道之濃度分佈影響 72
4-5-2 無流道之性能曲線 73
4-5-3直向流道寬度對電池之性能影響 74
4-5-4直向流道深度對電池之性能影響 75
4-5-5三種流道設計之比較 79
第五章 結論 84
5-1結論 84
5-2未來展望 85
參考文獻 86


[1]G. Kear, A. Shah, and F. Walsh, “Development of the all‐vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects,” Int. J. Energy …, no. May 2011, pp. 1105–1120, 2012.
[2]“科學網—液流电電池.” http://blog.sciencenet.cn/blog-1208826-839278.html. [Accessed: 12-May-2015].
[3]C. Blanc and A. Rufer, “Understanding the vanadium redox flow batteries,” Lab. d’Electronique Ind. Ec. Polytech. Fed. Lausanne, pp. 333–358, 2010.
[4]“Energy Storage: Pumped Storage | ClimateTechWiki.” http://www.climatetechwiki.org/technology/jiqweb-ph. [Accessed: 04-Feb-2015].
[5]財團法人台灣綜合研究院, 美國能源部電網儲能報告.
[6]儲能科技人才培育資源中心能源教育知識網, “儲能科技-壓縮空氣儲能.” http://www.enedu.org.tw/Technology/?id=10. [Accessed: 16-Dec-2014].
[7]儲能科技人才培育資源中心能源教育知識網, “儲能科技-飛輪儲能.” http://www.enedu.org.tw/Technology/?id=7. [Accessed: 24-Feb-2015].
[8]“電池檢測原理說明/鴻準科技股份有限公司.” http://b-tek.com.tw/xoops2/modules/contact/. [Accessed: 04-Feb-2015].
[9]“NaS電池介紹│林口之門.” http://lkk.dgi.tw/ID/6073.0.80.851. [Accessed: 04-Feb-2015].
[10]“全釩液流電池之技術原理-北京睿能世纪科技有限公司.” http://www.raypwr.com/storage4.htm. [Accessed: 04-Feb-2015].
[11]“Accelerated trends of the adoption of Li-ion batteries for electric vehicles | E2A - ELECTRO-TO-AUTO FORUM.” http://e2af.com/review/091111.shtml. [Accessed: 04-Feb-2015].
[12]“金屬空氣電池-Qingci日誌.” http://qingcili.blog.163.com/blog/static/17772334820110124371226/. [Accessed: 04-Feb-2015].
[13]馬振基、謝曉峰、江仁吉、蕭閔謙、楊士賢、張立學, “新型儲能電池 − 全釩液流電池的原理與發展現況,” 化學, vol. 70, no. 3, pp. 237–246, 2012.
[14]A. Tang, J. Bao, and M. Skyllas-Kazacos, “Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery,” J. Power Sources, vol. 196, no. 24, pp. 10737–10747, Dec. 2011.
[15]C. Ponce León, Frías-Ferrer, J. González-García, D. Szánto, and F. C. Walsh, “Redox flow cells for energy conversion,” J. Power Sources, vol. 160, no. 1, pp. 716–732, Sep. 2006.
[16]“北京普能世纪科技有限公司.” http://www.pdenergy.com.cn/index.aspx. [Accessed: 02-Feb-2015].
[17]“住友電器工業株會社-微型智能電網驗證系統.” http://global-sei.cn/csr/feature/2011/case.html. [Accessed: 02-Feb-2015].
[18]“中國大陸普能-國家能源大型風電並網系統研發中心.” http://www.pdenergy.com.cn/result2.aspx?id=210. [Accessed: 02-Feb-2015].
[19]G.-J. Hwang and H. Ohya, “Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery,” J. Memb. Sci., vol. 120, no. 1, pp. 55–67, Oct. 1996.
[20]T. Sukkar and M. Skyllas-Kazacos, “Water transfer behaviour across cation exchange membranes in the vanadium redox battery,” J. Memb. Sci., vol. 222, no. 1–2, pp. 235–247, Sep. 2003.
[21]C. Jia, J. Liu, and C. Yan, “A significantly improved membrane for vanadium redox flow battery,” J. Power Sources, vol. 195, no. 13, pp. 4380–4383, Jul. 2010.
[22]K. J. Kim, Y.-J. Kim, J.-H. Kim, and M.-S. Park, “The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries,” Mater. Chem. Phys., vol. 131, no. 1–2, pp. 547–553, Dec. 2011.
[23]K. Bromberger, J. Kaunert, and T. Smolinka, “A model for all-vanadium redox flow batteries: introducing electrode-compression effects on voltage losses and hydraulics,” Energy Technol., vol. 2, no. 1, pp. 64–76, Jan. 2014.
[24]P. Qian, H. Zhang, J. Chen, Y. Wen, Q. Luo, Z. Liu, D. You, and B. Yi, “A novel electrode-bipolar plate assembly for vanadium redox flow battery applications,” J. Power Sources, vol. 175, no. 1, pp. 613–620, Jan. 2008.
[25]B. Turker, S. Arroyo Klein, E.-M. Hammer, B. Lenz, and L. Komsiyska, “Modeling a vanadium redox flow battery system for large scale applications,” Energy Convers. Manag., vol. 66, pp. 26–32, Feb. 2013.
[26]D. Aaron, Z. Tang, A. B. Papandrew, and T. a. Zawodzinski, “Polarization curve analysis of all-vanadium redox flow batteries,” J. Appl. Electrochem., vol. 41, no. 10, pp. 1175–1182, Aug. 2011.
[27]X. Ma, H. Zhang, C. Sun, Y. Zou, and T. Zhang, “An optimal strategy of electrolyte flow rate for vanadium redox flow battery,” J. Power Sources, vol. 203, pp. 153–158, Apr. 2012.
[28]C.-H. Tian, R. Chein, K.-L. Hsueh, C.-H. Wu, and F.-H. Tsau, “Design and modeling of electrolyte pumping power reduction in redox flow cells,” Rare Met., vol. 30, no. S1, pp. 16–21, Nov. 2011.
[29]R. M. Darling and M. L. Perry, “The influence of electrode and channel configurations on flow battery performance,” J. Electrochem. Soc., vol. 161, no. 9, pp. A1381–A1387, Jun. 2014.
[30]Q. Xu, T. S. Zhao, and P. K. Leung, “Numerical investigations of flow field designs for vanadium redox flow batteries,” Appl. Energy, vol. 105, pp. 47–56, May 2013.
[31]徐波、齊亮、姚克儉、謝曉峰, “全釩液流電池電解液分佈的數值模擬,” 化工進展, vol. 32, no. 2, pp. 313–319, 2013.
[32]C. Yin, Y. Gao, S. Guo, and H. Tang, “A coupled three dimensional model of vanadium redox flow battery for flow field designs,” Energy, vol. 74, pp. 886–895, Sep. 2014.
[33]E. C. S. Transactions and T. E. Society, “Measurement of localized current distribution in a vanadium redox flow battery.,” vol. 58, no. 37, pp. 9–16, 2014.
[34]Q. Liu, A. Turhan, T. A. Zawodzinski, and M. M. Mench, “In-situ potential distribution measurement in an all-vanadium flow battery,” ChemCommun, vol. 49, no. 1, pp. 6292–6294, 2013.
[35]D. You, H. Zhang, and J. Chen, “A simple model for the vanadium redox battery,” Electrochim. Acta, vol. 54, no. 27, pp. 6827–6836, Nov. 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top