[1]G. Kear, A. Shah, and F. Walsh, “Development of the all‐vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects,” Int. J. Energy …, no. May 2011, pp. 1105–1120, 2012.
[2]“科學網—液流电電池.” http://blog.sciencenet.cn/blog-1208826-839278.html. [Accessed: 12-May-2015].
[3]C. Blanc and A. Rufer, “Understanding the vanadium redox flow batteries,” Lab. d’Electronique Ind. Ec. Polytech. Fed. Lausanne, pp. 333–358, 2010.
[4]“Energy Storage: Pumped Storage | ClimateTechWiki.” http://www.climatetechwiki.org/technology/jiqweb-ph. [Accessed: 04-Feb-2015].
[5]財團法人台灣綜合研究院, 美國能源部電網儲能報告.
[6]儲能科技人才培育資源中心能源教育知識網, “儲能科技-壓縮空氣儲能.” http://www.enedu.org.tw/Technology/?id=10. [Accessed: 16-Dec-2014].
[7]儲能科技人才培育資源中心能源教育知識網, “儲能科技-飛輪儲能.” http://www.enedu.org.tw/Technology/?id=7. [Accessed: 24-Feb-2015].
[8]“電池檢測原理說明/鴻準科技股份有限公司.” http://b-tek.com.tw/xoops2/modules/contact/. [Accessed: 04-Feb-2015].
[9]“NaS電池介紹│林口之門.” http://lkk.dgi.tw/ID/6073.0.80.851. [Accessed: 04-Feb-2015].
[10]“全釩液流電池之技術原理-北京睿能世纪科技有限公司.” http://www.raypwr.com/storage4.htm. [Accessed: 04-Feb-2015].
[11]“Accelerated trends of the adoption of Li-ion batteries for electric vehicles | E2A - ELECTRO-TO-AUTO FORUM.” http://e2af.com/review/091111.shtml. [Accessed: 04-Feb-2015].
[12]“金屬空氣電池-Qingci日誌.” http://qingcili.blog.163.com/blog/static/17772334820110124371226/. [Accessed: 04-Feb-2015].
[13]馬振基、謝曉峰、江仁吉、蕭閔謙、楊士賢、張立學, “新型儲能電池 − 全釩液流電池的原理與發展現況,” 化學, vol. 70, no. 3, pp. 237–246, 2012.[14]A. Tang, J. Bao, and M. Skyllas-Kazacos, “Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery,” J. Power Sources, vol. 196, no. 24, pp. 10737–10747, Dec. 2011.
[15]C. Ponce León, Frías-Ferrer, J. González-García, D. Szánto, and F. C. Walsh, “Redox flow cells for energy conversion,” J. Power Sources, vol. 160, no. 1, pp. 716–732, Sep. 2006.
[16]“北京普能世纪科技有限公司.” http://www.pdenergy.com.cn/index.aspx. [Accessed: 02-Feb-2015].
[17]“住友電器工業株會社-微型智能電網驗證系統.” http://global-sei.cn/csr/feature/2011/case.html. [Accessed: 02-Feb-2015].
[18]“中國大陸普能-國家能源大型風電並網系統研發中心.” http://www.pdenergy.com.cn/result2.aspx?id=210. [Accessed: 02-Feb-2015].
[19]G.-J. Hwang and H. Ohya, “Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery,” J. Memb. Sci., vol. 120, no. 1, pp. 55–67, Oct. 1996.
[20]T. Sukkar and M. Skyllas-Kazacos, “Water transfer behaviour across cation exchange membranes in the vanadium redox battery,” J. Memb. Sci., vol. 222, no. 1–2, pp. 235–247, Sep. 2003.
[21]C. Jia, J. Liu, and C. Yan, “A significantly improved membrane for vanadium redox flow battery,” J. Power Sources, vol. 195, no. 13, pp. 4380–4383, Jul. 2010.
[22]K. J. Kim, Y.-J. Kim, J.-H. Kim, and M.-S. Park, “The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries,” Mater. Chem. Phys., vol. 131, no. 1–2, pp. 547–553, Dec. 2011.
[23]K. Bromberger, J. Kaunert, and T. Smolinka, “A model for all-vanadium redox flow batteries: introducing electrode-compression effects on voltage losses and hydraulics,” Energy Technol., vol. 2, no. 1, pp. 64–76, Jan. 2014.
[24]P. Qian, H. Zhang, J. Chen, Y. Wen, Q. Luo, Z. Liu, D. You, and B. Yi, “A novel electrode-bipolar plate assembly for vanadium redox flow battery applications,” J. Power Sources, vol. 175, no. 1, pp. 613–620, Jan. 2008.
[25]B. Turker, S. Arroyo Klein, E.-M. Hammer, B. Lenz, and L. Komsiyska, “Modeling a vanadium redox flow battery system for large scale applications,” Energy Convers. Manag., vol. 66, pp. 26–32, Feb. 2013.
[26]D. Aaron, Z. Tang, A. B. Papandrew, and T. a. Zawodzinski, “Polarization curve analysis of all-vanadium redox flow batteries,” J. Appl. Electrochem., vol. 41, no. 10, pp. 1175–1182, Aug. 2011.
[27]X. Ma, H. Zhang, C. Sun, Y. Zou, and T. Zhang, “An optimal strategy of electrolyte flow rate for vanadium redox flow battery,” J. Power Sources, vol. 203, pp. 153–158, Apr. 2012.
[28]C.-H. Tian, R. Chein, K.-L. Hsueh, C.-H. Wu, and F.-H. Tsau, “Design and modeling of electrolyte pumping power reduction in redox flow cells,” Rare Met., vol. 30, no. S1, pp. 16–21, Nov. 2011.
[29]R. M. Darling and M. L. Perry, “The influence of electrode and channel configurations on flow battery performance,” J. Electrochem. Soc., vol. 161, no. 9, pp. A1381–A1387, Jun. 2014.
[30]Q. Xu, T. S. Zhao, and P. K. Leung, “Numerical investigations of flow field designs for vanadium redox flow batteries,” Appl. Energy, vol. 105, pp. 47–56, May 2013.
[31]徐波、齊亮、姚克儉、謝曉峰, “全釩液流電池電解液分佈的數值模擬,” 化工進展, vol. 32, no. 2, pp. 313–319, 2013.
[32]C. Yin, Y. Gao, S. Guo, and H. Tang, “A coupled three dimensional model of vanadium redox flow battery for flow field designs,” Energy, vol. 74, pp. 886–895, Sep. 2014.
[33]E. C. S. Transactions and T. E. Society, “Measurement of localized current distribution in a vanadium redox flow battery.,” vol. 58, no. 37, pp. 9–16, 2014.
[34]Q. Liu, A. Turhan, T. A. Zawodzinski, and M. M. Mench, “In-situ potential distribution measurement in an all-vanadium flow battery,” ChemCommun, vol. 49, no. 1, pp. 6292–6294, 2013.
[35]D. You, H. Zhang, and J. Chen, “A simple model for the vanadium redox battery,” Electrochim. Acta, vol. 54, no. 27, pp. 6827–6836, Nov. 2009.