跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 11:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林棟宏
研究生(外文):Dung-Hung Lin
論文名稱:0-3型水泥壓電複合材料配比研發及混凝土構件壓電效應
論文名稱(外文):Mixture Proportion of 0-3 Type Cement-Based Piezoelectric Composites and the Response of Force and Voltage on Concrete Members
指導教授:潘煌鍟潘煌鍟引用關係
指導教授(外文):Huang-Hsing Pan
口試委員:劉玉雯李明君鄭錦銅林宜清黃忠信潘煌鍟
口試日期:2016-07-29
學位類別:博士
校院名稱:國立高雄應用科技大學
系所名稱:土木工程與防災科技研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:196
中文關鍵詞:PZT水泥壓電材料Fuller & Thompson理想級配曲線配比設計
外文關鍵詞:PZTCement-based piezoelectric compositesFuller & Thompson ideal gradation curveProportion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:618
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
為使水泥壓電複合材料能夠應用在混凝土構件健康檢測和診斷上,本研究的水泥壓電複合材料是由體積含量各50%的水泥基材和壓電介質組成,以Fuller理想級配曲線設計介質級配與採用溫度處理製程來提高水泥壓電複合材料的壓電性質;在三彎點抗彎混凝土與梁柱混凝土構件中安裝傳統PZT壓電感測器及水泥壓電感測器,比較找出適用在混凝土健康檢測的水泥壓電感測器。
結果指出,比較GC(粗級配)、GM(中級配)及GF(細級配)三種級配設計之水泥壓電複合材料,GM的體積緻密度、露石率及壓電應變常數d33依序大於GC與GF;GM比單一粒徑細粒料PP的體積緻密度及露石率,各高出約3.92%及5.83%,證實級配曲線設計可以提高複合材料之體積緻密度及PZT顆粒二維緊密度,有助於提升壓電應變常數d33。GM與PP水泥複合壓電材料的楊氏模數約23Gpa~24 Gpa,比PZT(70 Gpa)更接近混凝土(23.28Gpa);其維氏硬度(Hv=150~166)也比PZT(Hv=561)更接近混凝土(Hv=150),證明水泥複合材料與混凝土之變形諧和性及硬度諧和性更優於PZT。於四種溫度處理製程中,以BB條件對於提升壓電應變常數d33之效果最明顯,GM之d33值達到最高88.8 pc/N,比PP約高出28.3%,顯示配比設計及溫度處理製程應用於提升0-3型水泥基PZT複合材料的壓電應變常數d33確實有效。
將GM製作成壓電感測器埋設於三點抗彎構件與梁柱構件,線性載重下,三點抗彎構件和梁柱構件分別以預埋式接觸型及預埋式包覆型的電壓輸出最大;在循環載重及循環加壓載重下,不論是三點抗彎構件或是梁柱構件,GM感測器都以嵌入式接觸型的電壓輸出最大。GM在三種載重及所有埋設方式或使用型式的條件下,都可直接測得電壓輸出值,而不需經過訊號放大器,且電壓輸出與彎曲應力的力-電敏感性良好,顯示0-3型水泥壓電複合材料適合應用於抗彎或梁柱結構。

This research tried to design a cement piezoelectric composite in order to utilize as a health detector sensor in concrete structures. The cement piezoelectric composite was made by equal volume ratio of cement matrix and piezoelectric media with Fuller’s ideal gradation curve design. Temperature treatment processes were used to improve the piezoelectric properties of cement piezoelectric composites. Comparison between the conventional PZT piezoelectric sensor and cement piezoelectric composite sensor were done through three-point bending concrete beam test and beam-column concrete member test.
Three types of mixed aggregate, GC(Coarse Grade), GM(Medium Grade) and GF(Fine Grade), were tested for producing cemend piezoelectric composites. The control type, said PP type, was produce by mixing with a single particle size of fine aggregate. In comparison with the material properties in volume density, exposed stone rate and piezoelectric strain constant d33, test results showed that GM type is better than GC and GF types. When comparing the GM type to PP type, volume density and exposed stone rate of GM type are 3.92% and 5.83% higher than that of PP type respectively. This result proves Fuller’s ideal gradation curve design can indeed promote volume density and PZT particle tightness of composites. The Young’s modulus and Vickers hardness of GM and PP types composites, E among 23~24GPa and Hv among 150~166, are closer to concrete material (E=23.28Gpa, Hv=150) than PZT (E=70Gpa, Hv=561). It proof that the cement piezoelectric composite has better compatibility to concrete material than PZT. Four temperature processes were used, and the BB process has the best affect to d33 property. Concrete mix design and temperature process enhance the d33 property for 0-3 type cement based PZT composite material because the highest value of d33 in GM type can reach 88.8pc/N, which is about 28.3% higher than d33 in PP type.
GM type cement piezoelectric composite was embedded in the three point bending test-element and beam-column test-element as sensor in two ways. One is GM type cement piezoelectric composite wrapped with cement mortar into a 25mmΦ×10mmH circular shape then embedded into test-element, called mounting way, and the other one is directly embedded into test-element, called contacting way. Tests were completed under linear load, cycling load, and cycling adding load action. Test results showed that all sensor voltages can be measured without signal amplifier under three load conditions, and the force-voltage sensitivities were good. Maximum voltage was measured from pre-mounting way for both three point bending and beam-column tests. In this study, we proof that 0-3 type cement piezoelectric composite is suitable for use in bending or beam-column structures.
GM will make a piezoelectric sensor embedded in the three point bending member and the member beams under linear load, the three point bending member and the member beams in contact with Embedded and Embedded-type cladding type, voltages maximum output; circulating load and pressure cycles under load, whether it is the three point bending member or member beams, GM-contact sensors are embedded in the maximum output voltage. GM in three truck and buried all the way or type of conditions, can be directly measured output voltage value, without passing the signal amplifier and the output voltage of the bending stress force - good electrical sensitivity, display 0-3 cement piezoelectric composites suitable for bending or beam-column structure.

摘要 I
ABSTRACT III
誌謝 VI
目錄 VII
圖目錄 X
表目錄 XVII
符號說明 XIX
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 2
1.4 本文組織與內容 3
第二章 文獻回顧 6
2.1 水泥 6
2.1.1 水泥的水化作用階段 6
2.2 壓電陶瓷材料 7
2.2.1 壓電材料種類 8
2.2.2 壓電材料特性 9
2.2.3 壓電材料參數 10
2.3 水泥基壓電複合陶瓷型式 11
2.4 0-3型水泥基壓電複合陶瓷材料組成之影響 17
2.4.1 壓電陶瓷含量壓電性質的影響 17
2.4.2 壓電陶瓷粒徑粗細的影響 21
2.5 0-3型水泥基壓電複合陶瓷製程之影響 23
2.5.1 壓電陶瓷壓製應力的影響 23
2.5.2 壓電陶瓷極化條件的影響 26
第三章 0-3型水泥複合陶瓷粒料配比 33
3.1 粒料級配曲線理論文獻回顧 34
3.2 壓電陶瓷粒料級配設計 37
3.3 壓電陶瓷相對理論密度 43
3.4 露石率 47
第四章 0-3型水泥基複合陶瓷 53
4.1 實驗計畫 53
4.1.1 實驗目的 53
4.1.2 固定條件 56
4.1.3 變數條件 56
4.1.4 實驗儀器與設備 57
4.1.5 試體配比 60
4.1.6 試體製作與養護 60
4.1.7 極化技術與量測 62
4.1.8 壓電性質量測 63
4.2 溫度效應對壓電應變常數 之影響 64
4.2.1 溫度處理AA 64
4.2.2 溫度處理AB 66
4.2.3 溫度處理BA 68
4.2.4 溫度處理 BB 70
4.3 粒徑效應對壓電應變常數 之影響 72
4.3.1 單一粒徑PP型 72
4.3.2 配比設計GC型 74
4.3.3 配比設計GM型 76
4.3.4 配比設計GF型 78
4.4 小結 80
第五章 壓電元件與混凝土構件諧和性 86
5.1 楊氏模數 86
5.2 維氏硬度 92
5.3 壓電本構方程式 95
第六章 三彎點抗彎混凝土之應用 97
6.1 實驗計畫 97
6.1.1 實驗目的 97
6.1.2 實驗流程 97
6.1.3 實驗材料 99
6.1.4 變數條件 99
6.1.5 實驗儀器與設備 99
6.1.6 試體配比及編號 101
6.1.7 試體製作與養護 102
6.1.8 元件電壓輸出與彎曲應力計算 106
6.2 埋設方式 107
6.2.1 預埋式 108
6.2.2 嵌入式 120
6.3 小結 132
第七章 梁柱混凝土構件之應用 138
7.1 實驗計畫 138
7.1.1 實驗目的 138
7.1.2 實驗流程 138
7.1.3 實驗材料 139
7.1.4 變數條件 140
7.1.5 實驗儀器與設備 140
7.1.6 試體配比及編號 141
7.1.7 梁柱混凝土構件製作與養護 143
7.1.8 梁柱元件電壓輸出與彎曲應力計算 145
7.2 預埋式試片 149
7.2.1 預埋式包覆型試片 149
7.2.2 預埋式接觸型試片 152
7.3 嵌入式 155
7.3.1 嵌入式包覆型試片 155
7.3.2 嵌入式接觸型 159
7.4 小結 162
第八章 結論與建議 167
8.1 結論 167
8.2 建議 169
參考文獻 170
附錄 175

1.Li. Z., Zhang. D. and Wu. K., 2002,“Cement-Based 0-3 Piezoelectric Composites” Am. Ceramic Society, 85, 305-313.
2.Sun. M., Li. Z. and Song. X., 2004, “Piezoelectric Effect of Hardebed Cement Paste” Cem. Conc. Comp., 26, 717-720.
3.Dong. B. and Li. Z., 2005, “Cement-Based Piezoelectric Ceramic Smart Composites, Composites Science and Technology, 65, 1363-1371.
4.Jaitanong. N., Chaipanich. A. and Tunkasiri. T., 2008, “Properties 0-3 PZT-Portland Cement Composites”, Ceramics International. 34. 793-795.
5.Li. Z.,Dong. B. and Zhang. D., 2005, “Influence of Polarization on Properties of 0-3 Cement-Based PZT Composites. Cement and Concrete Composite”, 27, 27-32.
6.Cheng. X., Huang. S., Chang. J., Xu. R., Liu. F. and Lu. L., 2005, “Piezoelectric and Dielectric Properties of Piezoelectric Ceramic-Sulphoaluminate Cement Composites”, J. European Ceramic Society. 25, 3223-3228.
7.Huang. S., Ye. Z., Hu. Y., Chang, J., Lu. L. and Cheng. X., 2007, “Effect of Forming Pressures on Electric Properties of Piezoelectric Ceramic/Sulphaluminate Cement Composites”, Composites Science and Technology. 67. 135-139.
8.Chaipanich. A. and Jaitanong. N., 2008, “Effect of Poling Time on Piezoelectric Properties of 0-3 PZT-Portland Cement Composites”, Ferroelectric Letters. 35. 73-78.
9.Pan. H. H. and Chen. Y. N., 2011, “Manufacturing and Polarization Process of 0-3 Cement-Based PZT Composites”, J. Chin. Inst. Civil Hydr. Eng., 23, 1-10.
10.Chaipanich. A., 2007, “Dielectric and Piezoelectric Properties of PZT-Silica Fume Cement Composites”, Current Applied Physics, 7, 532-536.
11.Huang. S., Chang. J., Lu. L., Liu. F., Ye. Z. and Cheng. X., 2006, “Preparation and Polarization of 0-3 Cement Based Piezoelectric Composites”, Materials Research Bulletin, 41, 291-297.
12.Stichai. H., Teeraporn. Y., Sutham. S., 2014, “Effect of particle size on the dielectric an piezoelectric properties of BCTZO/Cement composites”, Ceramics International, Vol.40, PP. 1209-1213.
13.Fuller. W. B. & Thompson. J. E., 1926, “The Laws of Proportioning Concrete.”A.S.C.E.Transactions, Vol. LIX, p67~172.
14.Li. Z., Gong. H. and Zhang. Y., 2009, “Fabrication and Piezoelectric of 0-3 Cement Based Composite with Nano-PZT powder”, Current Applied Physics, 9 , 588-591.
15.Chaipanich, A., 2007, “Effect of PZT Particle Size on Dielectric and Piezoelectric Properties of PZT–Cement Composites”, Current Applied Physics, Vol.7, pp. 574-577.
16.龔紅宇、張玉軍、車松蔚、趙玉軍,2011,“粒度對水泥基壓電複合材料的壓電性能和力學性能的影響”,人工晶體學報,第40卷第1期,pp.213-217。
17.Dong. B., Xing. F. and Li. Z., 2007, “The Study of Poling Behavior and Modeling of Cement-Based Piezoelectric Ceramic Composite” s, Mater. Sci. Eng., A 456, 317-322.
18.Lea, F. M., 1980. “The Chemistry of Cement and Concrete”, 3th., Chemical Publishing Co., New York.
19.Ropovics I., 1979, “Concrete-Making Materials” ,McGraw-Hill Book Co., New York.
20.Soroka. I., 1979, “Portland Cement Paste and Concrete”, MacMillan Press Ltd., London.
21.邱英嘉、謝素蘭,2003,混凝土品質控制-配比設計,新文京開發有限公司,台北。
22.周卓明,2003,壓電力學,全華科技圖書,台北。
23.吳朗,1994,電子陶瓷-壓電,全欣資訊圖書,台北。
24.汪建民,1994,陶瓷技術手冊,初版,中華民國產業科技發展協進會,台北。
25.Physik Instrumente (PI) GmbH & Co.KG. “The Piezoelectric Effect: Fundamentals of Piezoelectricity and Piezoelectric Actuators”. http://ppt.cc/pB5k
26.李曉瑩,2004,傳感器與測試技術,高等教務出版社,北京。
27.Li. Z., Zhang. D. and Wu. K., 2001, “Cement matrix 2-2 piezoelectric composite - Part1. Sensory effect”, Materials and Structures, Vol.34, pp.506-512.
28.Huang. S., Xu. D., Chang. J., Ye. Z. and Cheng. X., 2007, “Influence of water-cement ratio on the properties of 2-2 cement based piezoelectric composite”, Materials Letters, Vol.61, pp.5217-5219.
29.Xu. D., Cheng. X., Huang. S. and Jiang. M., 2009, “Electromechanical properties of 2-2 cement based piezoelectric composite”, Current Applied Physics, Vol.9, pp.816-819.
30.Shen. B., Yang. X. and Li. Z., 2006, “A cement-based piezoelectric sensor for civil engineering structure”, Materials and Structures, Vol.39, pp.37-42.
31.Rianyoi. R., Potong. R., Jaitanong. N., Yimnirun. R., Ngamjarurojana. A. and Chaipanich. A., 2011, “Dielectric and ferroelectric properties of 1-3 barium titanate-Portland cement composites”, Current Applied Physics.
32.http://www.aurelienr.com/electronique/piezo/piezo.pdf,壓電極化處理。
33.Chaipanich, A., 2007, “Dielectric and piezoelectric properties of PZT–cement composites”, Current Applied Physics, Vol.7, pp.537–539.
34.Chaipanich, A., Jaitanong, N. and Tunkasiri, T., 2007, “Fabrication and properties of PZT-ordinary Portland cement composites”, Materials Letters, Vol.61,pp.5206-5208.
35.葉仁豪,2011,卜作嵐材料與極化電場對0-3型水泥壓電複合材料的影響,國立高雄應用科技大學,碩士論文。
36.姜長庚,2013,爐石與飛灰水泥壓電複合材料在不同養護天數與極化電場的壓電特性,國立高雄應用科技大學,碩士論文。
37.黃兆龍,高性能混凝土-理論與實務,詹氏書局,台灣,2003。
38.Schaffer. J. P., Saxena, A, Antolovich. S. D., Sanders. T. H. and Warner. S. B., 2012, “The Science and Design of Engineering Materials.”The McGraw-Hill Companies, Inc.
39.MacDonald. K. A. & Lukkarila. M., Summer 2003, “Design Globally, Proportion Locally.”ACI Shotcrete.
40.Bolomey. J., “Determination of Compressive Strength of Mortar & Concrete.”Schweiaeriche Bauzeitung, 1926, p26.
41.Svoboda. L., 2002, “Design of Aggregate Mix.”CTU, Vol. A, Prague, p606~607.
42.Feret. R., “Sur la Compactite des Mortiers Hydauliques,”1892; Soc. d’Ind. Natl,1897; Le Genie Civil, 1936.
43.劉崇熙,「混凝土集料包圍緻密理論」,水利學報,中國,1964,p59~64。
44.S.L. Hsieh, 2006, The Mixture design Model of High Performance Concrete by Fuller’s Grading Curve”, Nanya Jounal, Vol. 36, Chungli, 2006.
45.Hwang. C.L. and Hsieh. S.L. , 2007, “The Effect of fly ash/slag on The Property of Reactive Powder Mortar Designed by Using Fuller’s Ideal Curve and Error Function”, Computers & Concrete, Vol. 4, Iss. 6, pp.425~436,.
46.ASTM C33, 2003, “Standard Specification for Concrete Aggregates”.
47.ASTM C127, 2003, “Standard Test Method for Specific Gravity and Absorption of Coarse Aggregates”.
48.CNS 3804 A3062, 2008, “磨石子地磚檢驗法”。
49.楊瑞豪,2014,矽基材料對PZT水泥複合材料壓電性質的影響,國立高雄應用科技大學,碩士論文。
50.Huang, S., Li, X., Liu, F., Chang, J., Xu, D. and Cheng, X., 2009, “Effect of carbon black on properties of 0-3 piezoelectric ceramic/cement composites”, Joumal of the European Ceramic Society, Vol.29, pp.2013-2019.
51.Chaipanich, A., Tunkasiri, T., 2007, “Microstructure and properties of Pb(Mg1/3Nb2/3)O3–Portland cement composites”, Current Applied Pgysics, Vol.7, pp.285-288.
52.Gong, H., Zhang, Y., Quan, J. and Che, S., 2011, “Preparation and properties of cement based piezoelectric composites modified by CNTs”, Current Applied Physics, Vol.11, pp.653-656.
53.Pan. H.H., Lin. D.H., Yeh. R.H., “Influence of pozzolanic materials on 0-3 cement-based piezoelectric composites”, in: S. Yazdani, A. Singh, eds., New Development Structure Engineering & Construction, (2013) 929–934.
54.Wang, F., Wang, H., Song, Y. and Sun, H., 2012, “High piezoelectricity 0-3 cement-based piezoelectric composites”, Materials Letters, Vol.76, pp.208-210.
55.張東,吳科如,李宗津, 2002, “水泥基壓電機敏複合材料的可行性分析和研究”, 建築材料學報, 5卷, 2期, 67-72頁.
56.張東,吳科如,李宗津, 2002, “2-2型水泥基壓電機敏複合材料的研制”, 壓電與聲光, 24卷, 3期, 377-381頁.
57.ASTM C674, 2008, “Standard Test Methods for Flexural Properties of Ceramic Whiteware Materials”.
58.郭聰慧,2003,“介質理論模擬水泥基複合材料應力-應變行為”,國立高雄應用科技大學,碩士論文。
59.陳志宏,2015“”水工構造用爐石活性粉混凝土,國立高雄應用科技大學,碩士論文。
60.Evans. A. G. and Charles. E. A.. 1976, “Fracture Toughness Determinations by Indentation”, J. Am. Ceram. Soc., 59 [7-8] 371-72.
61.Lawn. B. R. and Marshall. D. B., 1979, “Hardness, Toughness and Brittleness: An Indentation Analysis”, J. Am. Ceram. Soc., 62 [7-8] 347-350.
62.Anstis. G. R., Lawn. B. R. and Marshall. D. B., 1984 “A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurement”, J. Am. Ceram. Soc. 67 [10] E119-121.
63.ASTM C78-75, 2006, “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)”.
64.中國土木水利工程學會混凝土工程委員會,2011,鋼筋混凝土學(土木406-100),科技圖書股份有限公司,桃園。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊