跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/10/01 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李權峰
研究生(外文):Chuan-Fong Lee
論文名稱:在混和常態模型下使用貝氏方法估計參數在股票和選擇權資料
論文名稱(外文):Bayesian parameter estimation using stock and option data under Mixture Normal Models
指導教授:傅承德傅承德引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:統計研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:36
中文關鍵詞:混合常態模型隱含波動率貝氏估計信賴區間選擇權市場股票市場
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本文中,我們引用了一個混合常態模型來分析股票市場跟選擇權市場的關係。觀察在加入隱含波動率的訊息之後,混合常態模型的波動率是否有影響,而我們檢驗的方式是建立信賴區間去看他的變化,在模擬跟實證都是使用的是貝氏估計來探討,最後發現加入隱含波動率這個動作,確實減少了混合常態模型整體
波動率的信賴區間長度,估計值也變精準,也說明了選擇權跟股票市場在混合常態模型估計下會互相影響。
In this paper, we use a mixture normal model to analyze the relationship between the stock market and the option market. Observe after adding the implied volatility, whether the volatility of the mixture normal model has an effect and the way we test is to establish a confidence interval to see its changes. In the simulation and empirical study are using the Bayesian estimate to explore. Finally found to join the implied volatility, does reduce the confidence interval length of total volatility and estimates are more accurate, also shows that the option and the stock market under the mixture normal model will affect each other.
摘要 i
Abstract ii
誌謝 iii
1 Introduction 1
2 MNModelandImpliedVolatility 3
2.1 MixtureNormalModel.............................3
2.2 ImpliedVolatility................................6
3 Theparametersestimation 7
3.1 Bayesianwithstock..............................7
3.2 Bayesianwithstockandoption........................10
4 Simulations 13
4.1 Step.......................................13
4.2 Simulationresults................................17
5 Empiricalstudy 20
5.1 Datadescription................................20
5.2 Empiricalresult.................................21
6 Conclusion 25
References 26
[1] Alexander,C.,Narayanan,S.,(2001)OptionPricingwithNormalMixtureReturns
ModellingExcessKurtosisandUncertaintyinVolatility. ICMA CentreDiscussion
PapersinFinance.
[2] Ehlers,R.S.,(2003)BayesianInferenceandMCMCmethods:nopain,noWindows.
[3] Efron,B.(2013)EmpiricalBayesmodeling,computation,andaccuracy.
[4] Gen¸cay,R.,Salih,A.,(2003)DegreeofMispricingwiththeBlack-ScholesModel
and NonparametricCures. ANNALS OFECONOMICSANDFINANCE, 4,73-101.
[5] Huang,Y.L.(2015)BayesianReliabilityAnalysisofConstant-StressAccelerated
Degradation BasedonGammaProcesswithRandomEffectandTime-ScaleTrans-
formation.
[6] Ismail,M.T.,Phoong,S.Y.,(2015)AComparisonBetweenBayesianandMaximum
LikelihoodEstimationsinEstimatingFiniteMixtureModelforFinancialData. Sains
Malaysiana, 44(7), 1033–1039.
[7] Joseph,R.R.,(1981)MIXTURESOFNORMALDISTRIBUTIONSANDTHE
IMPLICATIONSFOROPTIONPRICING.
[8] Kon,S.J.,(1984)ModelsofStockReturns:Finance,39,147-165.
[9] Kon,S.,(1984)ModelsofStockReturns-AComparison. The JournalofFinance,
39, 147-165.
[10] Macbeth,J.D.,Merville,L.J.,(1979)AnempiricialexaminationofBlack-Scholes
call optionpricingmodel. The JournalofFinance, 34,1173-1186.
[11] Näsholm,A.,Bunjaku,B.,(2010)ForecastingVolatility-AComparisonStudyof
ModelBasedForecastsandImpliedVolatility.
[12] Neumann,N.,(1997)OptionPricingundertheMixtureofDistributionsHypothesis.
DiskussionspapierNr.208.
[13] Ornthanalai,C.,(2014)Lévyjumprisk:Evidencefromoptionsandreturns. Journal
of FinancialEconomics, 112, 69-90.
[14] Polson,N.,Johannes,M.,(2006)MCMCMethodsforContinuous-TimeFinancial
Econometrics.
[15] Poon,S.H.,(2005)APracticalGuidetoForecastingFinancialMarketVolatility.
[16] Popovi´c,B.V.,Cordeiro,G.,Ortega,E.M.,Pascoa,M.A.R.,(2017)Anewex-
tended mixturenormaldistribution. MATHEMATICALCOMMUNICATIONS, 22,
53–73.
[17] Redner,R.A.,Walker,H.F.,(2009)MixtureDensities,MaximumLikelihoodand
the EmAlgorithm.In SIAM Review, Vol.26,195-239.
[18] Tomczak,J.M.(2012)FisherinformationmatrixforGaussianandcategoricaldis-
tributions.
[19] Xu,D.,Wirjanto,T.S.,(2009)TheApplicationsofMixturesofNormalDistributions
in EmpiricalFinance:ASelectedSurvey.
[20] Zucchini,W.,MacDonald,I.(2009)HiddenMarkovModelsforTimeSeries.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top