跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/14 22:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方興中
研究生(外文):Hsin-Chung Fang
論文名稱:鐵鋁複合金屬應用於染整廢水之廠型化研究
論文名稱(外文):Application of iron-aluminum bimetal for the oxidation of dye wastewater : A pilot scale study
指導教授:連興隆連興隆引用關係
指導教授(外文):Hsing-Lung Lien
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:土木與環境工程學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:94
中文關鍵詞:染整廢水高級氧化程序鐵鋁複合金屬廢鋁屑
外文關鍵詞:dye wastewaterAOPsIron-aluminum bimetalaluminum scrap
相關次數:
  • 被引用被引用:1
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
表目錄 V
圖目錄 VI
摘要 VIII
ABSTRACT IX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 零價鐵金屬(Zero-valent iron, ZVI) 4
2.1.1 零價鐵的還原反應機制 6
2.1.2 零價鐵的表面吸附機制 7
2.1.3 零價鐵的氧化反應機制 8
2.2 鐵鋁複合金屬 (Fe/Al) 12
2.2.1 鐵鋁複合金屬之組成 12
2.2.2 鐵鋁複合金屬之還原機制 14
2.2.3 鐵鋁複合金屬之氧化機制 15
2.2.4 鐵鋁複合金屬之應用 16
2.3 染整廢水特性及處理技術 18
2.3.1 染整廢水特性 18
2.3.2 染料種類介紹 19
2.3.3 染整廢水處理技術 21
2.3.4 傳統Fenton法於染整廢水處理之技術 22
2.4. 鋁及鋁合金材料 24
第三章 材料與研究方法 28
3.1 研究架構 28
3.2 實驗材料 29
3.3 鐵鋁複合金屬之合成方式 29
3.3.1小量合成方式 (<2 K g) 29
3.3.2製成放大合成方式 (≦20 Kg) 30
3.4 廢棄鐵鋁複合金屬之再生 30
3.5 實驗儀器 30
3.5.1 COD測試與分光光度計 (Spectrophotometer) 30
3.5.2 金屬離子之測量 31
3.5.3 掃描式電子顯微鏡 (SEM) 31
3.5.4 比表面積 (BET-N2) 31
3.6 鐵鋁複合金屬氧化去除染料COD批次試驗 32
3.7 不同pH值條件下鐵鋁複合金屬之COD降解效果 32
3.8 鐵鋁複合金屬對COD的吸附效果 32
3.9 管柱試驗 33
3.9.1 單一管柱試驗 33
3.9.2 雙管柱串聯試驗 34
第四章 結果與討論 36
4.1 鐵鋁複合金屬合成 36
4.2 鐵鋁複合金屬材料特性分析 39
4.2.1 組成分析 39
4.2.2 電子顯微鏡(SEM)分析 41
4.2.3 比表面積分析儀(BET)分析 43
4.3 鐵鋁複合金屬降解COD批次試驗 44
4.3.1 不同配比鐵鋁複合金屬之COD降解效率及脫色效果 44
4.3.2 不同pH值條件下鐵鋁複合金屬之COD降解效果 46
4.4 鐵鋁複合金屬對COD的吸附效果 47
4.5 鐵鋁複合金屬管柱試驗 47
4.5.1 鐵鋁複合金屬管柱試驗-單一管柱 48
4.5.1.1 鐵鋁複合金屬實驗室單一管柱實驗 (2.1 Kg) 48
4.5.1.2 鐵鋁複合金屬實場單一管柱實驗 (10.25 Kg) 50
4.5.2 鐵鋁複合金屬管柱試驗-雙管柱串聯 (10 Kg級) 54
4.5.2.1 雙管柱串聯實驗-A組 54
4.5.2.2 雙管柱串聯實驗-B組 58
4.6 廢棄鐵鋁複合金屬之再生 63
4.7 成本分析 64
第五章 結論 65
第六章 建議 67
參考文獻 68
附錄一 實驗數據 76
附錄二 口試委員意見回覆 81
行政院環境保護署,水污染防治法第七條第二項,放流水標準。
行政院勞委會職業訓練局訓練教材,認識鋁及鋁合金材料。
林潔如 (2009) 利用Polyoxometalate催化零價鋁還原六價鉻,國立中興
大學土壤環境科學系所,碩士論文。
林書丞、連興隆 (2012) 探討鐵鋁複合金屬氧化能力及應用於染整廢水處理之研究,國立高雄大學土木與環境工程學系,碩士論文。
周珊珊,“Fenton 家族高級氧化處理技術”,工業技術研究院環境與安全
衛生技術發展中心,(2002)。
郭文旭、劉東昀、張仁祐 (2011) 以EPR與RSM技術進行Fenton程序最適化之探討,第二十三屆中華民國環境工程年會,第三十六屆廢水處理技術研討會,台南。
黃君傑、連興隆 (2006) 鋁鐵複合金屬之定量與材料特性分析,第十八屆中華民國環境工程年會,第四屆土壤與地下水研討會,台中。
康世芳 (1999a) 染整業八十七年放流水標準合理性修定之研議,台
灣區棉布印染整理工業同業公會委託研究報告。
謝彩虹、李文善、連興隆 (2005) 比較鐵-鋁與鎳-鋁複合金屬在降解四氯化碳之研究,第十七屆中華民國環境工程學會,第三屆土壤與地下水研討會,桃園。
Anjaneyulu, A., Chary, N.S. and Raj, D.S.S. (2005) Decolourization of industrial effluents-available methods and emerging technologies-a review. Rev. Environ. Sci. Biotechno. 4, 245-273.
Arnold, W.A. and Roberts, A.L. (2000) Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ. Sci. Technol. 34, 1794-1805.
Bigda, R.J. (1995) Consider Fenton's chemistry for wastewater treatment. Chem. Eng. Prog. 91, 62-66.
Bokare, A.D. and Choi, W. (2009) Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environ. Sci. Technol. 43, 7130-7135.
Cao, J., Wei, L., Huang, Q., Wang, L. and Han, S. (1999) Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere. 38, 565-571.
Chang, S.H., Chuang, S.H., Li, H.C. Liang, H.H. and Huang, L.C. (2009) Comparative study on the degradation of I.C. Remazol Brilliant Blue R and I.C.Acid Black 1 by Fenton oxidation and Fe0/air process and toxicity evaluation. J. Hazard. Mater. 166, 1279-1288.
Chen, J.L. and Souhail, R. (2001) Effects of pH on dechlorination of trichoroethylene by zero-valent iron. J. Hazard. Mate. 83, 243-254.
Chen, L.H., Huang, C.C. and Lien, H.L. (2008) Bimetallic iron-aluminum particles for dechlorination of carbon tetrachloride. Chemosphere. 73, 692-697.
Cheng, I.F., Muftikian, R., Fernando, Q. and Korte, N. (1997) Reduction of nitrate to ammonia by zeno-valent iron. Chemosphere. 35,2689-2695.
Cheng, S.F. and Wu, S.C. (2000) The enhancement methods for the degradation of TCE by zero-valent metals. Chemosphere. 41, 1263-1270.
Choe, S.Y., Chang, Y.K., Hwang, Y. and Khim, J. (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere. 41, 1307-1311.
Chun, H. and Yizhong, W. (1999) Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater. Chemosphere. 39, 2107-2115.
Cheng, M., Ma, W., Li, J., Huang,Y. and Zhao, J. (2004) Visible-light-assisted degradation of dye pollutants over Fe(III)-loaded resin in the presence of H2O2 at neutral pH values. Environ. Sci. Technol. 38, 1569-1575.
Comb, S., Molfett, A.D. and Sethi, R. (2011) A Comparison Between Field Applications of Nano-, Micro-, and Millimetric Zero-Valent Iron for the Remediation of Contaminated Aquifers. Water Air Soil Pollut 215, 595–607.
Crane, R.A. and Scott, T.B. (2012) Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials 211– 212, 112– 125.
Gulays, H. (1997) Processes for the removal of recalcitrant organics from industrial wastewaters. Wat. Sci. Tech. 36, 9-16.
Huang, C.P., Dong, C.D. and Tang, Z.H. (1993) Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment. Waste Manage. 13, 361-377.
Hug, S.J. and Leupin, O. (2003) Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol. 37, 2734-2742.
Hung, H.M., Ling, F.H., and Hoffmann, M.R. (2000) Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound. Environ. Sci. Technol. 34, 1758-1763.
Janzen, E.G., and Zhang, T.K. (1995) Identification of Reactive Free Radicals with a New 31P-Labeled DMPO Spin Trap. J. Org. Chem. 60, 5441-5445.
Joo, S.H., Feitz, A.J. and Waite, T.D. (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ. Sci. Technol. 38, 2242-2247.
Joo, S.H., Feitz, A.J., Sedlak, D.L., Waite, T.D. (2005) Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ. Sci. Technol. 39, 1263-1268.
Kang, S.F. and Chang, H.M. (1997) Coagulation of Textile Secondary Effluents with Fenton’s Reagent. Wat. Sci. Tech. 36, 215-222.
Kang, S.H. and Choi, W. (2009) Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle. Environ. Sci. Technol. 43, 878-883.
Kang, W.H., Yoon, K.H., Lee, E.S., Kim, J., Lee, K.B., Yim, H., Sohn, S. and Im, S. (2002) Melasma: histopathological characteristics in 56 Korean patients. Br J Dermatol. 146, 228-237.
Kang, Y.W. and Hwang, K.Y. (2000) Effects of reaction conditions on the oxidation efficiency in the Fenton process. Wat. Res. 34, 2786-2790.
Keenan, C.R. and Sedlak, D.L. (2008) Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 42, 1262-1267.
Lee, C., Keenan, C.R. and Sedlak, D.L. (2008a) Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent Iron and ferrous ion in the presence of oxygen. Environ. Sci. Technol. 42, 4921-4926.
Lee, C. and Sedlak, D.L. (2008) Enhanced formation of oxidants from Bimetallic Nickel-Iron Nanoparticles in the Presence of oxygen. Environ. Sci. Technol. 42, 8528-8533.
Lee, C. and Sedlak, D.L. (2009) A novel homogeneous Fenton-like system with Fe(III)-phosphotungstate for oxidation of organic compounds at neutral pH values. J. Molec. Catal. A. 311, 1-6.
Lee, J., Kim, J. and Choi, W. (2007) Oxidation on zerovalent iron promoted by polyoxometalate as an electron shuttle. Environ. Sci. Technol. 41, 3335-3340.
Lien, H.L. and Zhang, W.X. (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf., A. 191, 97-105.
Lien, H.L. and Zhang, W.X. (2005) Hydrodechlorination of Chlorinated Ethanes by Nanoscale Pd/Fe bimetallic Particles. J. Envior. Eng. 131, 4-10.
Lien, H.L. and Wilkin, R.T. (2005) High-level arsenite removal from groundwater by zero-valent iron. Chemosphere. 59, 377-386.
Ma, J., Song, W., Chen, C., Ma, W., Zhao, J. and Tang, Y. (2005) Fenton degradation of organic compounds promoted by dyes under visible light. Environ. Sci. Technol. 39, 5810-5815.
Ma, J., Song, W., Chen, C., Ma, W., Zhao, J., and Tang, Y. (2006) Fenton degradation of organic pollutants in the presence of Low-Molecular-Weight organic acids: cooperative effect of quinone and visible light. Environ. Sci. Technol. 40, 618-624.
Matheson, L.J. and Tratnyek, P.G. (1994) Reductive dehalogenatlon of chlorinated methanes by iron metal. Environ. Sci. Technol. 28, 2045-2053.
Michale, S.B. (1997) Textiles. Wat. Environ. Res. 69, 658-664.
Mueller, N.C., Braun, J.J., Černík, M., Rissing P., Rickerby, D. and Nowack, B. (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19, 550–558.
Sagawe, G., Lehnard, A., Lubber, M., and Bahnemann, D. (2001) The insulated solar Fenton hybrid process: Fundamental investigations. Helvetica Chimica Acta. 84, 3742-3759.
Sellers, R.M. (1980) Spectrophotometric determination of hydrogen peroxide using potassium (IV) oxalate. Analyst. 105, 950-954.
Scheutz, C., Winther, K. and Kjeldsen, P. (2000) Removal of halogenated organic compounds in landfill gas by top covers containing zero-valent iron. Environ. Sci. Technol. 34, 2557-2663.
Venceslau M.C., Tom, S. and Simon, J.J. (1994) Characterisation of Textile Wastewater - a reviews. Environ. Technol. 15, 917-929.
Vendevivere, P.C., Bianchi, R. and Verstraete, W., (1998) Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies. J. Chem. Tech. Biotech. 72, 289-302.
Wang, K.S., Lin, C.L. Wei, M.C. Liang, H.H. Li, H.C. Chang, C.H. Fang, Y.T. and Chang, S.H. (2010) Effects of dissolved oxygen on dye removal by zero-valent iron. J. Hazard. Mater. 182, 886-895.
Yan, W., Herzing, A.A., Kiely, C.J. and Zhang, W.Z. (2010) Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water. J. Contam. Hydro.118, 96-104.
Yan, W., Lien, H.L., Koelc, B.E. and Zhang, W.X. (2013) Iron nanoparticles for environmental clean-up: Recent developments and future outlook. Environ. Sci.: Processes Impacts, 15, 63-77.
Zhou, T., Li, Y., Ji, J., Wong, F. and Lu, X. (2008) Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/H2O2 Fenton-like system: Kinetic, pathway, and effect factors. Sep. Purif. Technol. 62, 551-558.
Zhu, W., Yang, Z. and Wang, L. (1996) Application of ferrous-hydrogen peroxide for the treatment of H-acid manufacturing process wastewater. Wat. Res. 30, 2949-2959.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top