中華民國國家標準,2014,建築物構造構件耐火試驗法-第1 部:一般要求事項,CNS 12514-1,經濟部標準檢驗局。
中華民國國家標準,2014,混凝土圓柱試體抗壓強度檢測法,CNS 1232,經濟部標準檢驗局。
中華民國國家標準,試驗室混凝土試體製作及養護法,CNS 1230,經濟部標準檢驗局,2005。
內政部,營建署,編輯委員會,1993,混凝土結構設計規範,營建雜誌社。
內政部,營建署,編輯委員會,2011,混凝土結構設計規範,營建雜誌社。
任逸群,2012,中性化水泥砂漿工程性質及檢測方法之研究,營建工程系,碩士論文,國立台灣科技大學,台灣。巫奇頴,2009,同步化聲光非破壞檢測研探類岩材料於貫切破壞之群刀效應,土木工程系,碩士論文,國立臺北科技大學,台灣。
李昶佑,2006,應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵,土木工程系,碩士論文,國立台北科技大學,台灣。沈進發、陳舜田、沈榮村,1988,混凝土火害溫度推測方法之研究,國科會專題研究報告,編號NSC77-0410-E011-09,台灣。
沈進發、陳舜田、涂耀賢,1991,以燒失量試驗法推測混凝土受火害程度之研究,國科會專題研究報告,編號NSC80-0410-E011-08,台灣。
沈進發、陳舜田、張郁慧,1993,火害延時對混凝土材料性質之影響,國科會專題研究報告,編號NSC82-0410-E011-079,台灣。
施佩文,2013,有限元素法研析擬脆材料受熱驅破壞之熱-固耦合,營建工程系,碩士論文,國立臺灣科技大學,台灣。柯志揚,2016,結合聲-光非破壞檢測於隧道環境遭熱驅破壞之傷損判識,營建工程系,碩士論文,國立台灣科技大學,台灣。張育誠,2013,連續熱損顆粒材之破裂韌度與拉力強度及其聲光破壞演化,營建工程系,碩士論文,國立臺灣科技大學,台灣。曹祖璟,2015,土、建工程之脆延性固材於熱力-固力耦合下之巨-微觀破壞特徵及火害度判識,土木工程系,碩士論文,國立臺北科技大學,台灣。莊育泰,2012,劣化RC牆生命週期耐震能力研究,營建工程系,碩士論文,國立台灣科技大學,台灣。黃兆龍、林仁益、王和源,火害建築物結構材料性質評估,技術學刊,1988,3.2:107-118。黃兆龍,1997,混凝土性質與行為,詹氏書局,台灣。
黃國忠,2009,準脆性岩石斷裂機制的聲發射和分離元素法應用,營建工程系,博士論文,國立台灣科技大學,台灣。
楊志強,2001,混凝土中水泥漿和顆粒骨材界面特性研究,土木工程系,碩士論文,國立交通大學,台灣。楊旻森,1987,壓力作用下混凝土材料火害後之力學行為,國立臺灣工業技術學院,碩士論文,台灣。
劉峵瑋,2015,擬脆性固材於熱驅破壞之準靜、動態力學行為,營建工程系,博士論文,國立臺灣科技大學,台灣。Abrams, M.S., 1971. Compressive strength of concrete at temperatures to 1600 F. Temperature and concrete, 25, 33-58.
Anderberg, Y., Thelandersson, S., 1976. Stress and deformation characteristics of concrete at high temperatures. Lund, Sweden: Lund Institute of Technology.
Arioz, O., 2007. Effects of elevated temperatures on properties of concrete. Fire safety journal. 42.8, 516-522.
ASTM E976-84, A., 2000. Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response. American society for testing and materials.
ASTM, C597., 2009. Standard test method for pulse velocity through concrete. American society for testing and materials.
Bieniawski, Z. T., Bernede, M. J. Bernede., 1979. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining deformability of rock materials in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Vol. 16. No. 2. Pergamon.
Biot, M.A., 1956. Theory of propagation of elastic waves in a fluid‐saturated porous solid. I. Low‐frequency range. The Journal of the acoustical Society of America. 28.2, 168-178.
Birgül, R., 2009. Hilbert transformation of waveforms to determine shear wave velocity in concrete. Cement and concrete research. 39(8), 696-700.
Carreira, D.J., Chu K.H., 1985. Stress-strain relationship for plain concrete in compression. Journal Proceedings. Vol. 82. No. 6.
Chen, L.H., 2001. Failure of Rock under Normal Wedge Indentation, Ph. D., Department of Civil and Mining Engineering. University of Minnesota, USA.
Cook, N.G.W., 1965. The failure of rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Vol. 2. No. 4. Pergamon.
Goodman, R.E., 1989. Introduction to rock mechanics. Vol. 2. New York: Wiley.
Grosse, C., Ohtsu, M., 2008. Acoustic Emission Testing, in: Grosse, C., Ohtsu, M. (Eds.). Springer Berlin Heidelberg.
Harmathy, T.Z., Allen, L. W. 1973. Thermal properties of selected masonry unit concretes. Journal Proceedings. Vol. 70. No. 2.
Hudson, J.A., Steven L.C., Charles F., 1972. Soft, stiff and servo-controlled testing machines: a review with reference to rock failure. Engineering Geology. 6.3, 155-189.
Kodur, V., 2014. Properties of concrete at elevated temperatures. ISRN Civil engineering.
Mohamedbhai, G.T.G.,1986. Effect of exposure time and rates of heating and cooling on residual strength of heated concrete. Magazine of Concrete Research. 38.136, 151-158.
Naus, D.J., 2006. The effect of elevated temperature on concrete materials and structures-a literature review. No. ORNL/TM-2005/553. Oak Ridge National Laboratory (ORNL).
Nogueira, C.L., Kaspar J.W., 2008. Ultrasonic testing of damage in concrete under uniaxial compression. Materials Journal. 98.3, 265-275.
Paterson, M.S., Wong, T.F., 2005. Experimental rock deformation-the brittle field. Springer Science & Business Media.
Promat, 2008. Tunnel Fire Protection For Tunnel Structures & Services.
Schneider, U., 1988. Concrete at high temperatures—a general review. Fire safety journal. 13.1, 55-68
Shevaldykin, V.G., Andrey A.S., Vladimir N.K., 2003. Ultrasonic low-frequency short-pulse transducers with dry point contact. Development and application. International Symposium NDT-CE. Berlin.
Shi, G., Yang, D., 2002. Determination of the elastic wave velocities in porous rocks with the change of overburden pressure and its universal significance. Science in China Series D: Earth Sciences. 45.7, 635-642.
Tavossi, H.M., Tittmann B.R., Cohen-Tenoudji F.,1999. Ultrasonic Characterization of Cement and Concrete. Review of Progress in Quantitative Nondestructive Evaluation. Springer US, 1943-1948.
Timoshenko, S., 1953. History of strength of materials: with a brief account of the history of theory of elasticity and theory of structures. Courier Corporation.
Vutukuri, V.S., Lama, R.D., Saluja, S.S., 1974. Handbook on Mechanical Properties of Rocks: Testing Techniques and Results, vol. I. Series on Rock and Soil Mechanics vol. 2, No. 1. Trans Tech Publications, Clausthal, Germany, ISBN 0-87849-010-8 .
Watstein, D., 1953. Effect of straining rate on the compressive strength and elastic properties of concrete. Journal Proceedings. Vol. 49. No. 4.
Wawersik, W.R., Fairhurs, C., 1969. A study of brittle rock fracture in laboratory compression experiments. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Vol. 7. No. 5. Pergamon.