跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佳昕
研究生(外文):Jia-Xin Chen
論文名稱:奈米異質結構Ag2O/Ag/Graphene oxide組成之Z-scheme光觸媒系統及光催化二氧化碳還原成甲醇之應用
論文名稱(外文):Construction of Z-scheme Photocatalyst System Consisting of Ag2O/Ag/Graphene Oxide Nanostructure for Photocatalytic Reduction of CO2 to Methanol
指導教授:鄭紀民
指導教授(外文):Jih-Mirn Jehng
口試委員:陳炎輝袁維勵
口試委員(外文):Ien-Whei ChenWei-Li Yuan
口試日期:2018-12-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:143
中文關鍵詞:Z-Scheme氧化石墨烯氧化銀紫外光光催化二氧化碳還原甲醇
外文關鍵詞:Z-SchemeGraphene oxideSilver oxideUltraviolet light PhotocatalysisCO2 reductionMethanol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:350
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光催化還原CO2成碳氫化合物燃料已經受到越來越多的關注,因為這個策略奏效可以減少溫室氣體之排放和提供替代能源之應用。雖然一些金屬氧化物和非金屬氧化物已被廣泛作為光催化劑,它們在光催化還原CO2反應中的效率仍然是非常低,無法產生經濟效益。亟需要能開發高效率性光觸媒系統應用於光催化還原CO2。本研究利用氧化石墨烯(GO)製備Z-Scheme奈米異質系統的光觸媒,利用不同的處理方式形成Ag2O/Ag/GO Z-Scheme組成結構,提高高電荷分離效率和強烈的氧化還原能力。運用X射線粉末繞射儀(XRD)、穿透式電子顯微鏡(TEM)、高解析X光光電子能譜儀(HR-XPS)、紫外光-可見光漫反射分光光譜儀(UV-Vis DRS)、比表面積分析儀(BET)、螢光光譜儀(PL)、傅立葉轉換紅外線光譜儀(FTIR)及熱重損失分析儀(TGA)鑑定其Ag2O/Ag/GO奈米組成、能隙大小及化合物的結構狀態資訊。最後利用光催化還原CO2,進行觸媒活性測試甲醇之產生速率,並得知在鍛燒溫度300℃及鍛燒時間1hr之5wt% Ag2O/Ag/GO光觸媒,甲醇產生速率為最高,其計算出RMeOH =8.6x105μmole g-cat-1hr-1。
另外利用高解析度電子顯微鏡分析光觸媒5wt% Ag2O/Ag/GO之晶體內部結構及晶面間距,確認Ago和Ag+1的同時存在。因此我們提出了Z-Scheme反應機制,Ag2O/Ag/GO光催化反應過程中,Ago可作為電荷傳輸介質,這類型的電荷轉移有效地增強了電子-電洞的分離,在紫外光的照射下,Ag2O和GO受光激發分別在導帶(CB)和價帶(VB)產生電子(e-)和電洞(h+),Ag2O中導帶上的光激發電子通過Ago轉移到GO的價帶中,過程中Ag2O價帶位置的電洞會進行氧化反應,具有很強的氧化能力,可以分解H2O釋放出H2 + O2,GO導帶位置的電子則會與外界進行還原反應,具有高的還原能力,將CO2還原得到甲醇(CH3OH),能大幅提升二氧化碳光催化還原成甲醇的效率。
Photocatalytic reduction of CO2 is a promising technology to both reduces the greenhouse gas emissions and provides alternative energy sources. Here, we designed a hierarchical Z-scheme photocatalyst consists in an Ag2O/Ag/GO nanostructure, in which Ag was deposited on the GO and subsequently Ag2O was oxidized on the surface of Ag/GO. Transmission Electron Microscopy (TEM), X-ray Diffractometer (XRD), X-ray Photoelectron Spectroscopy (XPS), UV-vis Diffuse Reflectance Spectra (UV-vis DRS), Surface Area and Porosity Analyzer (BET), Fluorescence Spectrophotometer (PL), Thermogravimetric analyzer (TGA) and Fourier transform infrared spectroscopy (FTIR) analysis were applied to characterize the Ag2O/Ag/GO catalysts. In addition, the photocatalytic activities of the Ag2O/Ag/GO catalysts were evaluated by the photocatalytic reduction of CO2 to methanol. The maximum MeOH formation rate was reached at a 0.01gram of 5wt% Ag2O/Ag/GO composite catalyst and a 300 mL of 0.2 N NaOH under the UV irradiation. The results of this reaction conditions have shown the methanol formation rate of 8.6 x105μmole g-cat-1hr-1.
From the results, the HRTEM image clearly indicates an intimate interface between Ag2O, Ag and GO in the composite and some lattice fringes can be clearly observed. The lattice spacing of 0.23 nm and 0.271 nm match the (111) plane of Ag and the (111) plane of Ag2O, respectively. We have proposed a possible Z-scheme mechanism based on the results. Z-scheme consists of ultrathin graphene oxide plates and Ag2O nanoparticles as photocatalysts, and Ag nanoparticle as a solid electron mediator offering a high speed charge transfer channel and leading to more efficient spatial separation of electron-hole pairs. It allows the electrons remaining in the conduction band (CB) of GO and holes in the valence band (VB) of Ag2O to possess strong reduction and oxidation capabilites, respectively, leading the Ag2O/Ag/GO to exhibit high photocatalytic reduction of CO2.
摘要 i
Abstract iii
目錄 v
表目錄 ix
圖目錄 x
第一章 緒論 1
1-1 前言 1
1-2 研究目的 3
第二章 文獻回顧 5
2-1 光觸媒之介紹與發展 5
2-1-1 光觸媒的基本原理 6
2-1-2 光觸媒的反應機制 7
2-2 光催化還原二氧化碳 10
2-2-1 二氧化碳回收處理方式 10
2-2-2 光催化還原二氧化碳機制 11
2-3 光觸媒效率之提升 16
2-3-1 異質接面改質光觸媒 17
2-3-2 添加貴重金屬 19
2-3-3 光觸媒之結構 21
2-3-4 光敏化光觸媒 23
2-3-5 Z-Scheme機制 25
2-4 石墨烯簡介 28
2-4-1 石墨烯之製備方法 30
2-4-2 氧化石墨烯應用於光催化還原二氧化碳之文獻探討 32
2-5 銀系半導體光觸媒 38
2-5-1 氧化銀光觸媒 39
2-5-2 銀系光觸媒應用於光催化還原二氧化碳之文獻探討. 40
第三章 實驗設備與研究方法 42
3-1 實驗藥品 42
3-2 實驗儀器 43
3-3 觸媒材料之製備 45
3-3-1 氧化石墨烯 (Graphene Oxide,GO)製備 45
3-3-2 Ag2O/ Ag/ GO 觸媒製備 47
3-4 儀器分析原理簡介 49
3-4-1 穿透式電子顯微鏡 (TEM) 49
3-4-2 高解析X光繞射儀 (XRD) 51
3-4-3 熱重損失分析儀 (TGA) 53
3-4-4 比表面積與孔洞分析儀 (BET) 55
3-4-5 傅立葉轉換紅外線光譜儀 (FTIR) 59
3-4-6 紫外光/可見光光譜儀 (UV-Vis) 61
3-4-7 X-射線光電子光譜 (XPS) 63
3-4-8 紫外光/可見光漫反射分光光譜儀 (DRS) 64
3-4-9 螢光光譜儀 (PL) 65
3-4-10 拉曼光譜儀 (Raman) 66
3-4-11 氣相層析儀 (GC-FID) 67
3-5 二氧化碳光催化還原反應 70
3-5-1 GC-FID操作條件 72
3-5-2 產物的定性 73
3-5-3 產物的定量 74
第四章 實驗結果與討論 75
4-1 氧化石墨烯(Graphene Oxide,GO)之特性分析 75
4-1-1 BET分析 75
4-1-2 XRD分析 77
4-1-3 TEM分析 78
4-1-4 FTIR分析 80
4-1-5 Raman分析 81
4-1-6 XPS分析 83
4-1-7 TGA分析 85
4-2 奈米銀擔持於氧化石墨烯之特性分析 86
4-2-1 不同比例的奈米銀擔持於氧化石墨烯之特性分析 86
4-2-1-1 XRD分析 86
4-2-1-2 TEM分析 87
4-2-1-3 UV-vis分析 90
4-2-1-4 FTIR分析 91
4-2-1-5 Raman分析 92
4-2-1-6 XPS分析 93
4-2-1-7 TGA分析 98
4-2-1-8 UV-Vis DRS分析 100
4-2-2 不同鍛燒溫度的奈米銀擔持於氧化石墨烯之特性分析 …………………………………………………………101
4-2-2-1 XRD分析 101
4-2-2-2 FTIR分析 103
4-2-2-3 Raman分析 105
4-2-2-4 UV-Vis DRS分析 106
4-2-3 不同鍛燒時間的奈米銀擔持於氧化石墨烯之特性分析 …………………………………………………………107
4-2-3-1 XRD分析 107
4-2-3-2 FTIR分析 109
4-2-3-3 Raman分析 110
4-2-3-4 UV-Vis DRS分析 111
4-3 奈米銀擔持於氧化石墨烯之光催化還原二氧化碳反應 112
4-3-1 氧化石墨烯和石墨烯之GC分析 113
氧化石墨烯和石墨烯之PL分析 115
4-3-2 不同比例的奈米銀擔持於氧化石墨烯之GC分析 116
不同比例的奈米銀擔持於氧化石墨烯之PL分析 118
4-3-3 不同鍛燒溫度的奈米銀擔持於氧化石墨烯之GC分析 …………………………………………………………119
不同鍛燒溫度的奈米銀擔持於氧化石墨烯之PL分析 121
4-3-4 不同鍛燒時間的奈米銀擔持於氧化石墨烯之GC分析 …………………………………………………………122
不同鍛燒時間的奈米銀擔持於氧化石墨烯之PL分析 123
4-3-5 不同5wt%Ag2O/Ag/GO的觸媒量克數之GC分析 124
4-4 Z-scheme系統之反應機制 125
HRTEM 127
第五章 結論 128
參考文獻 130
附錄 138
[1]M. M. Halmann, Greenhouse Gas Carbon Dioxide Mitigation : Science and Technology. 1998.
[2]J. Gibbins and H. Chalmers, "Carbon capture and storage," Energy policy, vol. 36, no. 12, pp. 4317-4322, 2008.
[3]https://climate.nasa.gov/vital-signs/carbon-dioxide/, 2018.
[4]K. Kočí, L. Obalová, and Z. Lacný, "Photocatalytic reduction of CO2 over TiO2 based catalysts," Chemical Papers, journal article vol. 62, no. 1, pp. 1-9, 2008.
[5]Y. Zhou et al., "High-Yield Synthesis of Ultrathin and Uniform Bi2WO6 Square Nanoplates Benefitting from Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel under Visible Light," ACS Applied Materials & Interfaces, vol. 3, no. 9, pp. 3594-3601, 2011.
[6]K. Li, X. An, K. Park, M. Khraisheh, and J. Tang, "A critical review of CO2 photoconversion: Catalysts and reactors," Catalysis today, vol. 224, pp. 3-12, 2014.
[7]H. C. Hsu et al., "Graphene oxide as a promising photocatalyst for CO2 to methanol conversion," Nanoscale, vol. 5, no. 1, pp. 262-268, 2013.
[8]Y. Nosaka and M. Fox, "Kinetics for electron transfer from laser-pulse irradiated colloidal semiconductors to adsorbed methylviologen: dependence of the quantum yield on incident pulse width," Journal of Physical Chemistry, vol. 92, no. 7, pp. 1893-1897, 1988.
[9]胡振國譯,“半導體元件-物理與技術”,全華圖書公司,1989.
[10]呂宗昕,圖解奈米科技與光觸媒,商周出版,2003.
[11]X. Li, J. Yu, S. Wageh, A. Al Ghamdi, and J. Xie, "Graphene in Photocatalysis: A Review," Small, vol. 12, no. 48, pp. 6640-6696, 2016.
[12]A. L. Linsebigler, G. Lu, and J. T. Yates, "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results," Chemical Reviews, vol. 95, no. 3, pp. 735-758, 1995.
[13]吳聰萍,周勇,鄒志剛,"光催化還原CO2的研究現狀與發展前景," Chinese Journal of Catalysis, vol. 32, pp. 1565-08, 2011.
[14]A. H. Yahaya, M. Gondal, and A. Hameed, Selective laser enhanced photocatalytic conversion of CO2 into methanol, pp. 206-212, 2004.
[15]P. Kumar, C. Joshi, N. Labhsetwar, R. Boukherroub, and S. Jain, "A novel Ru/TiO2 hybrid nanocomposite catalyzed photoreduction of CO2 to methanol under visible light," Nanoscale, vol. 7, no. 37, pp. 15258-15267, 2015.
[16]P. Kumar, H. Mungse, S. Cordier, R. Boukherroub, O. Khatri, and S. Jain, "Hexamolybdenum clusters supported on graphene oxide: Visible-light induced photocatalytic reduction of carbon dioxide into methanol," Carbon, vol. 94, pp. 91-100, 2015.
[17]P. Kumar, N. Naumov, R. Boukherroub, and S. Jain, "Octahedral rhenium K4[Re6S8(CN)6 ] and Cu(OH)2 cluster modified TiO2 for the photoreduction of CO2 under visible light irradiation," Applied catalysis. A, General, vol. 499, pp. 32-38, 2015.
[18]S.Ijaz, M. Ehsan, M. Ashiq, and T. He, "Synthesis of a Bi2S3/CeO2nanocatalyst and its visible light-driven conversion of CO2 into CH3OH and CH4," Catalysis Science & Technology, vol. 5, no. 12, pp. 5208-5215, 2015.
[19]R. Gusain, P. Kumar, O. Sharma, S. Jain, and O. Khatri, "Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation," Applied catalysis. B, Environmental, vol. 181, pp. 352-362, 2016.
[20]S. Kuk, R. Singh, D. Nam, J.-K. Lee, and C. Park, "Photoelectrochemical Reduction of Carbon Dioxide to Methanol through a Highly Efficient Enzyme Cascade," Angewandte Chemie International Edition, vol. 56, no. 14, pp. 3827-3832, 2017.
[21]Q. Zhang, J. Wang, C.-F. Lin, Y. Jing, and C. T. Chang, "Photoreduction of carbon dioxide by graphene–titania and zeolite–titania composites under low-intensity irradiation," Materials science in semiconductor processing, vol. 30, pp. 162-168, 2015.
[22]M. Gondal, M. Dastageer, L. Oloore, and U. Baig, "Laser induced selective photo-catalytic reduction of CO2 into methanol using In2O3-WO3 nano-composite," Journal of photochemistry and photobiology. A,Chemistry, vol. 343, pp. 40-50, 2017.
[23]D. Adekoya, M. Tahir, "g-C3N4/(Cu/TiO2 ) nanocomposite for enhanced photoreduction of CO2 to CH3OH and HCOOH under UV/visible light," Journal of CO2 Utilization, vol. 18, pp. 261-274, 2017.
[24]S. Zhang, X. Yin, and Y. Zheng, "Enhanced photocatalytic reduction of CO2 to methanol by ZnO nanoparticles deposited on ZnSe nanosheet," Chemical physics letters, vol. 693, pp. 170-175, 2018.
[25]K. Sivula, "Metal Oxide Photoelectrodes for Solar Fuel Production, Surface Traps, and Catalysis," The Journal of Physical Chemistry Letters, vol. 4, no. 10, pp. 1624-1633, 2013.
[26]E. Barton, D. Rampulla, and A. Bocarsly, "Selective Solar-Driven Reduction of CO2 to Methanol Using a Catalyzed p-GaP Based Photoelectrochemical Cell," Journal of the American Chemical Society, vol. 130, no. 20, pp. 6342-6344, 2008.
[27]J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. Al Ghamdi, "Heterojunction Photocatalysts," Advanced Materials, vol. 29, no. 20, p. 1601694, 2017.
[28]Y. Zou, J. W. Shi, D. Ma, Z. Fan, L. Lu, and C. Niu, "In situ synthesis of C-doped TiO2 @g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution," Chemical engineering journal, vol. 322, pp. 435-444, 2017.
[29]J. Low, B. Cheng, and J. Yu, "Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2 : a review," Applied surface science, vol. 392, pp. 658-686, 2017.
[30]W. Hou, W. Hung, P. Pavaskar, A. Goeppert, M. Aykol, and S. Cronin, "Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions," ACS Catalysis, vol. 1, no. 8, pp. 929-936, 2011.
[31]J. Low, S. Cao, J. Yu, and S. Wageh, "Two-dimensional layered composite photocatalysts," Chemical communications , vol. 50, no. 74, p. 10768, 2014.
[32]J. Wen, J. Xie, X. Chen, and X. Li, "A review on g-C3N4 -based photocatalysts," Applied surface science, vol. 391, pp. 72-123, 2017.
[33]P. Zhang, T. Wang, and H. Zeng, "Design of Cu-Cu2O/g-C3N4 nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble Erythrosin B dye sensitization," Applied surface science, vol. 391, pp. 404-414, 2017.
[34]Y.-P. Yuan, L.-S. Yin, S.-W. Cao, G.-S. Xu, C.-H. Li, and C. Xue, "Improving photocatalytic hydrogen production of metal–organic framework UiO-66 octahedrons by dye-sensitization," Applied catalysis. B, Environmental, vol. 168, pp. 572-576, 2015.
[35]K. Li, B. Peng, and T. Peng, "Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels," ACS Catalysis, vol. 6, no. 11, pp. 7485-7527, 2016.
[36]W. Yu, D. Xu, and T. Peng, "Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism," Journal of Materials Chemistry A: Materials for energy and sustainability, vol. 3, no. 39, pp. 19936-19947, 2015.
[37]H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, and K. Tanaka, "All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system," Nature Materials, vol. 5, no. 10, pp. 782-786, 2006.
[38]X.L. Yin, J. Liu, W.J. Jiang, X. Zhang, J.S. Hu, and L.J. Wan, "Urchin-like Au@CdS/WO3 micro/nano heterostructure as a visible-light driven photocatalyst for efficient hydrogen generation," Chemical communications , vol. 51, no. 72, pp. 13842-13845, 2015.
[39]H. Wang et al., "Visible light driven Ag/Ag3PO4/AC photocatalyst with highly enhanced photodegradation of tetracycline antibiotics," Applied surface science, vol. 353, pp. 391-399, 2015.
[40]Q. Huang, Q. Zhang, S. Yuan, Y. Zhang, and M. Zhang, "One-pot facile synthesis of branched Ag-ZnO heterojunction nanostructure as highly efficient photocatalytic catalyst," Applied surface science, vol. 353, pp. 949-957, 2015.
[41]H. Shioyama and T. Akita, A new route to carbon nanotubes, pp. 179-181, 2003.
[42]L. Viculis, J. Mack, and R. Kaner, "A chemical route to carbon nanoscrolls," Science, vol. 299, no. 5611, pp. 1361-1361, 2003.
[43]李旭,趙衛峰,陳國華. 材料導報.p.48, 2008.
[44]K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, no. 5696, pp. 666-669, 2004.
[45]H. An, W.J. Lee, and J. Jung, "Graphene synthesis on Fe foil using thermal CVD," Current applied physics, vol. 11, no. 4, pp. 81-85, 2011.
[46]J. Hass, W. A. de Heer, and E. H. Conrad, "The growth and morphology of epitaxial multilayer graphene," Journal of physics. Condensed matter, vol. 20, no. 32, p. 323202, 2008.
[47]W. S. Hummers Jr, W. Hummers, and R. Offeman, "Preparation of Graphitic Oxide," Journal of the American Chemical Society, vol. 80, no. 6, pp. 1339-1339, 1958.
[48]J. Shen, B. Yan, M. Shi, H. Ma, N. Li, and M. Ye, "Fast and facile preparation of reduced graphene oxide supported Pt–Co electrocatalyst for methanol oxidation," Materials research bulletin, vol. 47, no. 6, pp. 1486-1493, 2012.
[49]S. Sharma et al., "Rapid Microwave Synthesis of CO Tolerant Reduced Graphene Oxide-Supported Platinum Electrocatalysts for Oxidation of Methanol," The Journal of Physical Chemistry C, vol. 114, no. 45, pp. 19459-19466, 2010.
[50]G. Wang et al., "Facile Synthesis and Characterization of Graphene Nanosheets," The Journal of Physical Chemistry C, vol. 112, no. 22, pp. 8192-8195, 2008.
[51]H. Wang et al., "Preparation and characterization of Ag2O/SWNTs photocatalysts and its photodegradation on tetracycline," Journal of Industrial and Engineering Chemistry, vol. 30, pp. 64-70, 2015.
[52]N. Yang, J. Zhai, D. Wang, Y. Chen, and L. Jiang, "Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells," ACS Nano, vol. 4, no. 2, pp. 887-894, 2010.
[53]P. Kumar, A. Bansiwal, N. Labhsetwar, and S. L. Jain, "Visible light assisted photocatalytic reduction of CO2 using a graphene oxide supported heteroleptic ruthenium complex," Green Chemistry, vol. 17, no. 3, pp. 1605-1609, 2015.
[54]余家國,許第發, "銀系半導體光催化材料研究進展," vol. 45, no. 9, p. 16, 2017.
[55]X. Wang, S. Li, H. Yu, J. Yu, and S. Liu, "Ag2O as a New Visible-Light Photocatalyst: Self-Stability and High Photocatalytic Activity," Chemistry - A European Journal, vol. 17, no. 28, pp. 7777-7780, 2011.
[56]Y. He, L. Zhang, B. Teng, and M. Fan, "New Application of Z-Scheme Ag3PO4/g-C3N4 Composite in Converting CO2to Fuel," Environmental Science & Technology, vol. 49, no. 1, pp. 649-656, 2015.
[57]A. LI, "Synthesis of Ag2Se–graphene–TiO2 nanocomposite and analysis of photocatalytic activity of CO2 reduction to CH3OH" Indian Academy of Sciences, vol. 40, no. 7, 2017.
[58]D. Marcano et al., "Improved Synthesis of Graphene Oxide," ACS Nano, vol. 4, no. 8, pp. 4806-4814, 2010.
[59]陳力俊等,材料電子顯微鏡學,科儀叢書,1994.
[60]陳家全,李家維,楊瑞森,生物電子顯微鏡學,貴儀中心,1991.
[61]許樹恩,“X光射線繞射原理與材料結構分析”,中國材料科學學會,1996.
[62]孫逸民,劉興鑑,陳玉舜,趙敏勳,謝明學. "儀器分析." 全威圖書.2017.
[63]柯以侃,吳明珠,儀器分析(熱分析法),文京圖書有限公司,1999.
[64]K. S. W. Sing, "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)," Pure and applied chemistry, vol. 57, no. 4, pp. 603-619, 1985.
[65]梁哲豪等,儀器分析,華格那企業,2017.
[66]王啟川,儀器分析實驗,高立,1998.
[66]Shimadzu,台灣津島科學儀器,2018.
[68]N. W. Bower, "Principles of Instrumental Analysis. 4th edition (Skoog, D. A.; Leary, J. J.)," Journal of Chemical Education, vol. 69, no. 8, p. 224, 1992.
[69]J.M. Jehng, W.J. Liu, T.C. Pan, and Y.M. Dai, "Preparation of Pt nanoparticles on different carbonaceous structure and their applications to methanol electro-oxidation," Applied surface science, vol. 268, pp. 425-431, 2013.
[70]A. Mishra and S. Ramaprabhu, "Functionalized graphene sheets for arsenic removal and desalination of sea water," Desalination, vol. 282, pp. 39-45, 2011.
[71]B. Zahed and H. Hosseini Monfared, "A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: Support effect," Applied surface science, vol. 328, pp. 536-547, 2015.
[72]X. Sun et al., "Nano-graphene oxide for cellular imaging and drug delivery," Nano Research, vol. 1, no. 3, pp. 203-212, 2008.
[73]M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho, and R. Saito, "Raman spectroscopy on isolated single wall carbon nanotubes," Carbon, vol. 40, no. 12, pp. 2043-2061, 2002.
[74]M. S. Dresselhaus, G. Dresselhaus, and M. Hofmann, "Raman spectroscopy as a probe of graphene and carbon nanotubes," Philosophical transactions - Royal Society. Mathematical, Physical and engineering sciences, vol. 366, no. 1863, pp. 231-236, 2008.
[75]A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Physical Review B: Condensed Matter, vol. 61, no. 20, pp. 14095-14107, 2000.
[76]D. H. Wang, Y. Hu, J. J. Zhao, L. L. Zeng, X. M. Tao, and W. Chen, "Holey reduced graphene oxide nanosheets for high performance room temperature gas sensing," Journal of Materials Chemistry A: Materials for energy and sustainability, vol. 2, no. 41, pp. 17415-17420, 2014.
[77]G. Wang, L.-T. Jia, Y. Zhu, B. Hou, D.-B. Li, and Y.-H. Sun, "Novel preparation of nitrogen-doped graphene in various forms with aqueous ammonia under mild conditions," RSC Advances, vol. 2, no. 30, p. 11249, 2012.
[78]A. Lerf, H. He, M. Forster, and J. Klinowski, "Structure of Graphite Oxide Revisited," The Journal of Physical Chemistry B, vol. 102, no. 23, pp. 4477-4482, 1998.
[79]W.-J. Liu, T.-W. Kao, Y.-M. Dai, and J.-M. Jehng, "Ni-based nanocomposites supported on graphene nano sheet (GNS) for supercapacitor applications," Journal of Solid State Electrochemistry, vol. 18, no. 1, pp. 189-196, 2014.
[80]D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, and D.G. Fernig, "A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra," Analyst, vol. 139, no. 19, p. 4855, 2014.
[81]M. Mohamed, M. Khairy, and A. Ibrahem, "Dispersed Ag2O/Ag on CNT-Graphene Composite: An Implication for Magnificent Photoreduction and Energy Storage Applications," Frontiers in Chemistry, vol. 6, p. 250, 2018.
[82]E.B. Kaganovich et al., "SERS spectroscopy of nanocomposite porous films containing silver nanoparticles," Optics and Spectroscopy, vol. 118, no. 2, pp. 294-299, 2015.
[83]G.I.N. Waterhouse, G. Bowmaker, and J. Metson, "Mechanism and active sites for the partial oxidation of methanol to formaldehyde over an electrolytic silver catalyst," Applied catalysis. A, General, vol. 265, no. 1, pp. 85-101, 2004.
[84]D. Vidyasagar et al., "Silver/Silver(II) oxide (Ag/AgO) loaded graphitic carbon nitride microspheres: An effective visible light active photocatalyst for degradation of acidic dyes and bacterial inactivation," Applied catalysis. B, Environmental, vol. 221, pp. 339-348, 2018.
[85]X. Hao, X. Wang, S. Zhou, H. Zhang, and M. Liu, "Microstructure and properties of silver matrix composites reinforced with Ag-doped graphene," Materials chemistry and physics, vol. 215, pp. 327-331, 2018.
[86]R.G. Bai et al., "The biogenic synthesis of a reduced graphene oxide–silver (RGO–Ag) nanocomposite and its dual applications as an antibacterial agent and cancer biomarker sensor," RSC Advances, vol. 6, no. 43, pp. 36576-36587, 2016.
[87]M. Zhao, H. Li, X. Shen, Z. Ji, and K. Xu, "Facile electrochemical synthesis of CeO2@Ag@CdS nanotube arrays with enhanced photoelectrochemical water splitting performance," Dalton Transactions, vol. 44, no. 46, pp. 19935-19941, 2015.
[88]R.J.V. Michael, B. Sambandam, T. Muthukumar, M. Umapathy, and P. Manoharan, "Spectroscopic dimensions of silver nanoparticles and clusters in ZnO matrix and their role in bioinspired antifouling and photocatalysis," PCCP (Physical chemistry chemical physics), vol. 16, no. 18, pp. 8541-8555, 2014.
[89]E. Albiter, M. A. Valenzuela, S. Alfaro, G. Valverde Aguilar, and F. M. Martínez Pallares, "Photocatalytic deposition of Ag nanoparticles on TiO2: Metal precursor effect on the structural and photoactivity properties," Journal of Saudi Chemical Society, vol. 19, no. 5, pp. 563-573, 2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊