跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 02:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:温玉瑭
研究生(外文):Wen, Yu-Tang
論文名稱:開發一自行車騎乘下肢疼痛及傷害評估與騎乘策略建議系統
論文名稱(外文):Developing a System for Diagnosing Pain and Injury of Lower Extremities and Coaching Strategy for Cycling
指導教授:楊秉祥楊秉祥引用關係
指導教授(外文):Yang, Bing-Shiang
口試委員:竹村裕徐瑋勵林育志許尚華鄭文雅張至滿黃紹仁楊秉祥
口試委員(外文):Takemura, HiroshiHsu, Weil-LiLin, Yu-ChihHsu, Shang-HwaJang, Wen-YeaChang, Chih-ManHuang, Shao-JenYang, Bing-Shiang
口試日期:2017-03-23
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:104
中文關鍵詞:騎乘傷害肌肉骨骼模擬騎乘策略傷害評估自行車騎乘
外文關鍵詞:Cycling injuryMusculo-skeletal modelling systemCycling strategyDiagnosing painCycling
相關次數:
  • 被引用被引用:2
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
休閒運動的效益,一直以來被視為是促進健康的重要收穫。近幾年自行車運動的提倡,主要因為此運動需熟練度的門檻較低,同時兼顧交通工具的使用。一般自行車騎乘者在購買考量的選項中,多以身高作為車架尺寸的選擇、並以成車出廠的元件進行購置。然而,自行車騎乘係一種肌肉收縮的重複性循環,在騎乘過程中,生理軟組織須不斷適應突發性的暴力對身體組織所產生的破壞作用,累積多次機械性作用力所造成的「微傷」,可能產生症狀或功能障礙,因此傷害可視為「由一次或多次的內發性或外加性作用力,對身體組織所造成的破壞結果」。臨床上對於運動傷害的評估,主要以疼痛問診、觸診與放射線檢查施予處方箋,然而此類檢驗的靜態性診斷卻無法反映動態性騎乘以及個體差異的動態活動。以常見的自行車運動傷害來看,本研究推測膝關節的解剖構造(脛骨、股骨、髕骨)與自行車兩側曲柄的寬度是造成疼痛發生的可能因素,因此本研究開發一動態性運動傷害評估系統,結合運動訓練及運動傷害處置(急性與慢性處置),針對12名一般自行車騎乘者,於公路車款安裝車輛功率輸出量測裝置,以自選最適騎乘姿勢在30分鐘的騎乘過程中,結合肌肉骨骼模擬系統量化肌肉活化、關節力矩、及關節受力,提出綜合評估騎乘自行車可能遭遇傷害的踩踏位置。研究結果顯示,踩踏過程時的髖、膝關節的近端與遠端皆無較大的關節受力,位於踩踏位置上死點至40°時,膝關節承受30%體重、髖關節則承受25%體重(40°-100°),而踝關節則有前後方向承受60%體重(40°-100°)。在長時間騎乘下,位於20°- 60°時外旋動作增加、40°-80°時肌肉活化提升、同時形成膝屈曲、髖外旋與髖關節表現,進而產生較大的關節力矩,導致脛骨股骨關節疼痛的發生。60°-140°時股內、外側肌群活化過大,形成膝外旋(rotation)造成膝蓋鷹喙內壓力過大,提高髕骨股骨關節疼痛的發生,此兩者為以抽樣方式推估母群體(group results)騎乘自行車可能造成傷害的踩踏範圍。根據研究結果,本研究利用模擬改善前述騎乘策略,針對一般騎乘自行車的民眾騎乘時,降低膝屈曲與足外旋發生、增加足底踩踏在邁向下死點前的用力情形轉移的滑移,能夠改善股內、外側肌的活化情形,同時降低關節受力與力矩的輸出。針對個體騎乘策略的修正(individual results),本研究利用關節角度驅動肌肉骨骼模擬系統作為視覺化改善騎乘策略的改善與預防,期提供臨床人員針對動態診斷與因應,並輔以開發設計訓練器器材加以積極訓練、降低受傷,促進運動過程中傷害預防與降低。
In clinical practices, sports injuries are assessed using pain-related inquiries, palpations, or radiographic examinations, after which prescriptions are prescribed to patients. In the repetitive sport of cycling, when muscles resisting environment, the physiological soft tissue must continually accumulate and anticipate fatigue toward direction. By combining anatomy, musculoskeletal simulations, and the concept of sports training, this study developed a system for assessing sports injuries and thus improve cycling strategies and prevent related injuries. All measurements were made during one full cycle of pedaling. We measured the following: 1) normalized (for body weight) reaction force of the hip, ankle, and hip joint before and after simulation strategies, 2) joint moments of hip adduction, and knee and plantar flexion before and after simulation strategies, 3) joint moments of knee, hip, and plantar flexion, 4) joint moments of hip adduction and ankle eversion, 5) joint moments of hip external rotation, and 6) activity of the soleus, rectus femoris, gastrocnemius, biceps femoris, vastus medialis, vastus lateralis, and tibialis anterior muscles. We assessed participant perception of pain and identified possible injuries induced by the accumulated reaction force, observed at the proximal–distal locations of the hip and knee joints during pedaling.We employed musculoskeletal simulation systems and external power output measurement methods to collect quantitative data on acute and chronic cycling. Complete pedal and crank reaction force data were input into a simulation software in which muscle activity was included as a cause of cycling injuries. Musculature performances were simulated for different individuals to identify musculature associated with the various cycling conditions as well as the causes of and adaptive measures for injuries for all crank locations. Next, a method that effectively quantified cycling-induced injuries was derived using data such as muscle coordination, activity, and joint stability. We identified possible injuries induced by the accumulated reaction force, observed at the proximal–distal locations of the hip and knee joints during pedaling. During prolonged cycling, the muscle activities and joint moments increased while the knee flexion and hip external rotations generated potential injuries. In addition, excessive vastus lateralis and medialis activities led to repetitive external rotations of the knee and extreme pressure on the knee joints at 60°-140° crank angles, thus increasing the occurrence of patellofemoral and tibiofemoral pain. Conversely, simulated cycling strategies reduced knee flexion and external rotations of the feet, increased the force application in the plantar flexion toward the bottom dead center, and improved muscle activities at 80°–120° angles, and avoiding excessive slippage improved the VL and VM activities and prevented excessive reaction force in the joints and moment output. The system was used to lower the possibility of injuries by providing improved cycling strategies and encouraging training as well as facilitating sports and training performance. Overall, the developed system assigned to provide the prevented injuries of Lower limbs.
中文摘要 I
ABSTRACT III
INDEX ii
LIST OF TABLES iv
LIST OF FIGURES v
CONCEPTUAL DEFINITION vii
Chapter 1. Introduction 1
1.1 Overview 1
1.2 Background and Motivation 1
1.3 Research Construction and Objectives 3
Chapter 2. Literature Review 6
2.1 Characteristics of Cycling Injuries 6
2.1.1 Acute Injuries 7
2.1.2 Chronic Injuries 8
2.2 Influence of External Factors 12
2.3 Influence of Internal Factors 14
Chapter 3. Research Content and Methods 23
3.1 Injury Trajectory 23
3.1.1 Joint Reaction Force 24
3.1.2 Joint Stability and Muscle Coordination 24
3.2 Adaptive Measures for Injuries 27
3.2.1 Building an Cycling Diagnosis System 28
3.2.2 Trajectory Assessments of Acute and Chronic Injuries 48
3.2.3 Assistive Bicycle Design and Assessment Technology 50
3.2.4 Use and Assessments of Musculatures Training Apparatuses 52
3.3 Statistical Verification 54
Chapter 4. Results and Discussion 56
4.1 Injury Trajectory Results 57
4.1.1 Angles and Causes Leading to Acute Injuries 57
4.1.2 Times and Performance Associated with Chronic Injuries 60
4.2 Data Simulation Method 66
4.2.1 Building an Assessment System and Subsequent Results 66
4.2.2 Riders’ Performance after Simulated Cycling Strategies Using the Bicycle Design 75
4.2.3 Results Obtained Using the Training Apparatus 80
Chapter 5. Conclusion and Recommendations 82
5.1 Conclusion 82
5.2 Innovativeness and Applicability 85
5.3 Limitations and Development 86
References 88
Appendix A:Patent certification of Taiwan Intellectual Property 95
Appendix B: Cycling Diagnosis System Report Example 96
Abt, J. P., J. M. Smoliga, M. J. Brick, J. T. Jolly, S. M. Lephart and F. H. Fu (2007). "Relationship between cycling mechanics and core stability." The Journal of Strength and Conditioning Research 21(4): 1300-1304.
Ansley, L. and P. Cangley (2009). "Determinants of “optimal” cadence during cycling." European Journal of Sport Science 9(2): 61-85.
Asplund, C. and P. St Pierre (2004). "Knee pain and bicycling." The Physician and Sports Medicine 32(4): 1-12.
Bailey, M., F. Maillardet and N. Messenger (2003). "Kinematics of cycling in relation to anterior knee pain and patellar tendinitis." Journal of Sports Sciences 21(8): 649-657.
Bertucci, W., F. Grappe, A. Girard, A. Betik and J. D. Rouillon (2005). "Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling." Journal of Biomechanics 38(5): 1003-1010.
Bieuzen, F., R. Lepers, F. Vercruyssen, C. Hausswirth and J. Brisswalter (2007). "Muscle activation during cycling at different cadences: effect of maximal strength capacity." Journal of Electromyography and Kinesiology 17(6): 731-738.
Bini, R., P. A. Hume and J. L. Croft (2011). "Effects of bicycle saddle height on knee injury risk and cycling performance." Sports Medicine 41(6): 463-476.
Bressel, E. (2001). "The influence of ergometer pedaling direction on peak patellofemoral joint forces." Clinical Biomechanics 16(5): 431-437.
Bridgestone (1991). Bridgestone Bicycle Catalogue. Japan, Bridgestone Cycle INC. 11.
Broker, J. P. and P. F. Hill (2006). Bicycle accidents: biomechanical, engineering, and legal aspects. Principles of bicycle accident reconstruction. Tucson, AZ, Lawyers & Judges Publishing Company: 97-99.
Burden, A. and R. Bartlett (1999). "Normalisation of EMG amplitude: an evaluation and comparison of old and new methods." Medical Engineering and Physics 21(4): 247-257.
Burke, E. (1986). Science of cycling, Human Kinetics Publishers.
Caldwell, G. E., L. Li, S. D. McCole and J. M. Hagberg (1998). "Pedal and crank kinetics in uphill cycling." Journal of Applied Biomechanics 14(3): 245-259.
Callaghan, M. J. (2005). "Lower body problems and injury in cycling." Journal of Bodywork and Movement Therapies 9(3): 226-236.
Cameron, A., J. Papadopoulos, V. Forbes, D. Lam, J. Jones, J. Cavacuiti, A. Varju, R. Reiser and M. Peterson (1998). "human Power."
Cannon, D. T., F. W. Kolkhorst and D. J. Cipriani (2007). "Effect of pedaling technique on muscle activity and cycling efficiency." European Journal of Applied Physiology 99(6): 659-664.
Chapman, A. R., B. Vicenzino, P. Blanch and P. W. Hodges (2008). "Patterns of leg muscle recruitment vary between novice and highly trained cyclists." Journal of Electromyography and Kinesiology 18(3): 359-371.
Chia, H. N. and M. Hull (2008). "Compressive moduli of the human medial meniscus in the axial and radial directions at equilibrium and at a physiological strain rate." Journal of Orthopaedic Research 26(7): 951-956.
Chou, S. W. and B. S. Yang (2010). Resistance, power output, and muscle activity in outdoor cycling. M.S. degree, National Chiao Tung University.
Coast, J. R. and H. G. Welch (1985). "Linear increase in optimal pedal rate with increased power output in cycle ergometry." European Journal of Applied Physiology and Occupational Physiology 53(4): 339-342.
Crowninshield, R. (1979). "Use of optimization techniques to predict muscle forces." Journal of Biomechanics 12(8): 627-631.
Davis III, R. B., S. Ounpuu, D. Tyburski and J. R. Gage (1991). "A gait analysis data collection and reduction technique." Human Movement Science 10(5): 575-587.
Davis, R. and M. Hull (1981). "Measurement of pedal loading in bicycling: II. Analysis and results." Journal of Biomechanics 14(12): 857-872.
Davis, R. B., S. Ounpuu, D. Tyburski and J. R. Gage (1991). "A gait analysis data collection and reduction technique." Human Movement Science 10(5): 575-587.
Dettori, N. J. and D. C. Norvell (2006). "Non-traumatic bicycle injuries - A review of the literature." Sports Medicine 36(1): 7-18.
Dorel, S., A. Couturier and F. Hug (2008). "Intra-session repeatability of lower limb muscles activation pattern during pedaling." Journal of Electromyography and Kinesiology 18(5): 857-865.
Ericson, M. O., R. Nisell, U. Arborelius and J. Ekholm (1985). "Muscular activity during ergometer cycling." Scandinavian Journal of Rehabilitation Medicine 17(2): 53.
Ettema, G., H. Lorås and S. Leirdal (2009). "The effects of cycling cadence on the phases of joint power, crank power, force and force effectiveness." Journal of Electromyography and Kinesiology 19(2): e94-e101.
Fairclough, J., K. Hayashi, H. Toumi, K. Lyons, G. Bydder, N. Phillips, T. M. Best and M. Benjamin (2006). "The functional anatomy of the iliotibial band during flexion and extension of the knee: implications for understanding iliotibial band syndrome." Journal of Anatomy 208(3): 309-316.
Faria, E. W., D. L. Parker and I. E. Faria (2005). "The science of cycling: factors affecting performance-part 2." Sports Medicine 35(4): 313-337.
Faria, I. and P. R. Cavanagh (1978). The physiology and biomechanics of cycling. University of California, CA, Wiley.
Farrell, K. C., K. D. Reisinger and M. D. Tillman (2003). "Force and repetition in cycling: possible implications for iliotibial band friction syndrome." The Knee 10(1): 103-109.
Goodfellow, J., D. Hungerford and C. Woods (1976). "Patello-femoral joint mechanics and pathology. 2. Chondromalacia patellae." Journal of Bone and Joint Surgery, British Volume 58(3): 291-299.
Goodfellow, J., D. Hungerford and M. Zindel (1976). "Patello-femoral joint mechanics and pathology: functional anatomy of the patello-femoral joint." Journal of Bone and Joint Surgery, British Volume 58(3): 287-290.
Gregersen, C. S., M. L. Hull and N. A. Hakansson (2006). "How changing the nnversion/eversion foot angle affects the nondriving intersegmental knee moments and the relative activation of the vastii muscles in cycling." Journal of Biomechanical Engineering-Transactions of the American Society of Mechanical Engineering 128(3): 391-398.
Gregor, R. J., J. P. Broker and M. Ryan (1991). "The biomechanics of cycling." Exercise and Sport Sciences Reviews 19(1): 127.
Gross, A. C., C. R. Kyle and D. J. Malewicki (1983). "The aerodynamics of human-powered land vehicles." Scientific American 249(6): 142-152.
Hagan, R. D., S. E. Weis and P. B. Raven (1992). "Effect of pedal rate on cardiorespiratory responses during continuous exercise." Medicine and Science in Sports and Exercise 24(10): 1088-1095.
Hannaford, D. R., G. T. Moran and H. F. Hlavac (1986). "Video analysis and treatment of overuse knee injury in cycling: a limited clinical study." Clinics in Podiatric Medicine and Surgery 3(4): 671-678.
Herrington, L. and C. Nester (2004). "Q-angle undervalued? The relationship between Q-angle and medio-lateral position of the patella." Clinical Biomechanics 19(10): 1070-1073.
Holmes, J., A. Pruitt and N. Whalen (1991). "Cycling knee injuries: common mistakes that cause injuries and how to avoid them." Cycling Science 3: 11-14.
Holmes, J., A. Pruitt and N. Whalen (1994). "Lower extremity overuse in bicycling." Clinics in Sports Medicine 13(1): 187-205.
Houtz, S. and F. Fischer (1959). "An analysis of muscle action and joint excursion during exercise on a stationary bicycle." The Journal of Bone and Joint Surgery 41(1): 123.
Huberti, H. and W. Hayes (1984). "Patellofemoral contact pressures." The Journal of Bone and Joint Surgery 66: 715-724.
Hug, F. and S. Dorel (2009). "Electromyographic analysis of pedaling: A review." Journal of Electromyography and Kinesiology 19(2): 182-198.
Kadaba, M. P., H. Ramakrishnan and M. Wootten (1990). "Measurement of lower extremity kinematics during level walking." Journal of Orthopaedic Research 8(3): 383-392.
Karst, G. M. and G. M. Willett (1995). "Onset timing of electromyographic activity in the vastus medialis oblique and vastus lateralis muscles in subjects with and without patellofemoral pain syndrome." Physical Therapy 75(9): 813-823.
Kautz, S. A., M. E. Feltner, E. F. Coyle and A. M. Baylor (1991). "The pedalling technique of elite endurance cyclists - changes with increasing workload at constant cadence." International Journal of Sport Biomechanics 7(1): 29-53.
Kronisch, R. L., R. P. Pfeiffer, T. K. Chow and C. B. Hummel (2002). "Gender differences in acute mountain bike racing injuries." Clinical Journal of Sport Medicine 12(3): 158.
Kyle, C. (1989). "The aerodynamics of handlebars and helmets." Cycling Science 1(1): 22-25.
Kyle, C. R. (1988). The mechanics and aerodynamics of cycling. Medical and Scientific Aspects of Cycling. E. R. Burke and M. M. Newson. Champaign, IL, Human Kinetics: 235-251.
Larsen, A. H., L. Puggaard, U. Hämäläinen and P. Aagaard (2008). "Comparison of ground reaction forces and antagonist muscle coactivation during stair walking with ageing." Journal of Electromyography and Kinesiology 18(4): 568-580.
Liew, M. (2013). "Knee Alignment." from http://www.thebikebutler.com/bike_fitting/knee.html.
Lin, C. Y. and B. S. Yang (2010). Effect of slope and pavement on muscle activities during uphill real-road cycling. Master, National Chiao Tung University.
Lin, C. Y. and B. S. Yang (2010). Effects of pedal orientations on knee joint forces and lower limb muscle activities. M.S. degree, National Chiao Tung University.
Lucia, A., A. Juan, M. Montilla, S. Canete, A. Santalla, C. Earnest and M. Perez (2004). "In professional road cyclists, low pedaling cadences are less efficient." Medicine and Science in Sports and Exercise 36(6): 1048-1054.
Makris, E. A., P. Hadidi and K. A. Athanasiou (2011). "The knee meniscus: Structure–function, pathophysiology, current repair techniques, and prospects for regeneration." Biomaterials 32(30): 7411-7431.
Marsh, A. P. and P. E. Martin (1995). "The relationship between cadence and lower extremity EMG in cyclists and noncyclists." Medicine and Science in Sports and Exercise 27(2): 217-225.
Martin, J. C., D. L. Milliken, J. E. Cobb, K. L. McFadden and A. R. Coggan (1998). "Validation of a mathematical model for road cycling power." Journal of Applied Biomechanics 14: 276-291.
Matsumoto, S., T. Tokuyasu and K. Ohba (2009). "A study on postural optimization for bicycle exercise based on electromyography." Artificial Life and Robotics 14(2): 144-149.
Mellion, M. B. (1991). "Common cycling injuries, management and prevention." Sports Medicine 11(1): 52.
Miller, M. S., J. P. Peach and T. S. Keller (2001). "Electromyographic analysis of a human powered stepper cycle during seated and standing riding." Journal of Electromyography and Kinesiology 11(6): 413-423.
Minetti, A. E. (2011). "Bioenergetics and biomechanics of cycling: the role of 'internal work'." European Journal of Applied Physiology 111(3): 323-329.
Moore, K. L., A. F. Dalley and A. M. Agur (2013). Clinically oriented anatomy, Lippincott Williams & Wilkins.
Moseley, L. and A. E. Jeukendrup (2001). "The reliability of cycling efficiency." Medicine and Science in Sports and Exercise 33(4): 621.
Nagai, T. (2010). Effects of 8-week nonlinear periodized training program on physical fitness and contributors of functional knee joint stability in 101st division army soldiers. Ph. D., University of Pittsburgh.
Neptune, R. and W. Herzog (2000). "Adaptation of muscle coordination to altered task mechanics during steady-state cycling." Journal of Biomechanics 33(2): 165-172.
Neptune, R. R. and S. A. Kautz (2000). "Knee joint loading in forward versus backward pedaling: implications for rehabilitation strategies." Clinical Biomechanics 15(7): 528-535.
Neptune, R. R., S. A. Kautz and M. L. Hull (1997). "The effect of pedaling rate on coordination in cycling." Journal of Biomechanics 30(10): 1051-1058.
Olaf Schumacher, Y. and P. Mueller (2002). "The 4000-m team pursuit cycling world record: theoretical and practical aspects." Medicine and Science in Sports and Exercise 34(6): 1029.
Phillips, C., A. Forrester, A. Purdue and M. Stokes (2010). Optimisation of a bicycle chainring to aid in rehabilitation of athletes suffering from patellofemoral pain syndrome (PFPS). 8th Conference of the International Sports Engineering Association Vienna, Austria, Elsevier. 2: 3151-3156.
Phillips, C. W. G., A. I. J. Forrester, A. I. Purdue and M. J. Stokes (2010). Optimisation of a bicycle chainring to aid in rehabilitation of athletes suffering from patellofemoral pain syndrome (PFPS). 8th Conference of the International Sports Engineering Association. A. Sabo, P. Kafka, S. Litzenberger and C. Sabo. Vienna, Austria, Elsevier. 2: 3151-3156.
Powers, C. M., R. Landel and J. Perry (1996). "Timing and intensity of vastus muscle activity during functional activities in subjects with and without patellofemoral pain." Physical Therapy 76(9): 946-955.
Rankin, J. W. and R. R. Neptune (2008). "A theoretical analysis of an optimal chainring shape to maximize crank power during isokinetic pedaling." Journal of Biomechanics 41(7): 1494-1502.
Redfield, R. and M. Hull (1986). "Prediction of pedal forces in bicycling using optimization methods." Journal of Biomechanics 19(7): 523-540.
Rouffet, D. and C. Hautier (2008). "EMG normalization to study muscle activation in cycling." Journal of Electromyography and Kinesiology 18(5): 866-878.
Ruby, P., M. Hull and D. Hawkins (1992). "Three-dimensional knee joint loading during seated cycling." Journal of Biomechanics 25(1): 41-53.
Ruby, P., M. L. Hull, K. A. Kirby and D. W. Jenkins (1992). "The effect of lower-limb anatomy on knee loads during seated cycling." Journal of Biomechanics 25(10): 1195-1207.
Ryan, M. and R. Gregor (1992). "EMG profiles of lower extremity muscles during cycling at constant workload and cadence." Journal of Electromyography and Kinesiology 2(2): 69-80.
Sanner, W. and W. O'Halloran (2000). "The biomechanics, etiology, and treatment of cycling injuries." Journal of the American Podiatric Medical Association 90(7): 354-376.
Sarabon, N., B. Fonda and G. Markovic (2012). "Change of muscle activation patterns in uphill cycling of varying slope." European Journal of Applied Physiology: 1-9.
Saraf, H., K. Ramesh, A. Lennon, A. Merkle and J. Roberts (2007). "Mechanical properties of soft human tissues under dynamic loading." Journal of Biomechanics 40(9): 1960-1967.
Schwellnus MP, -. and E. Derman (2005). "Common injuries in cycling: prevention, diagnosis and management: review article." South African Family Practice 47(7): p. 14, 16, 18-19.
Seabury, J. J., W. C. Adams and M. R. Ramey (1977). "Influence of pedalling rate and power output on energy expenditure during bicycle ergometry." Ergonomics 20(5): 491-498.
Shakoor, N., A. Agrawal and J. A. Block (2008). "Reduced lower extremity vibratory perception in osteoarthritis of the knee." Arthritis Care and Research 59(1): 117-121.
Sheehan, F. T., A. Derasari, K. M. Fine, T. J. Brindle and K. E. Alter (2010). "Q-angle and J-sign: indicative of maltracking subgroups in patellofemoral pain." Clinical Orthopaedics and Related Research 468(1): 266-275.
Smak, W., R. R. Neptune and M. L. Hull (1999). "The influence of pedaling rate on bilateral asymmetry in cycling." Journal of Biomechanics 32(9): 899-906.
Souza, D. R. and M. T. Gross (1991). "Comparison of vastus medialis obliquus: vastus lateralis muscle integrated electromyographic ratios between healthy subjects and patients with patellofemoral pain." Physical Therapy 71(4): 310-316.
Suzuki, S., S. Watanabe and S. Homma (1982). "EMG activity and kinematics of human cycling movements at different constant velocities." Brain Research 240(2): 245-258.
Swain, D. P. (1994). "The influence of body mass in endurance bicycling." Medicine and Science in Sports and Exercise 26(1): 58-63.
Trumbower, R. D. and P. D. Faghri (2004). "Improving pedal power during semireclined leg cycling." Engineering in Medicine and Biology Magazine, IEEE 23(2): 62-71.
Wanich, T., C. Hodgkins, J. A. Columbier, E. Muraski and J. G. Kennedy (2007). "Cycling injuries of the lower extremity." Journal of the American Academy of Orthopaedic Surgeons 15(12): 748-756.
Wilson, D. G. (2004). Bicycling science. Massachusetts, MA, Massachusetts Institite of Technology Press.
Winter, D. A. (2009). Biomechanics and motor control of human movement, John Wiley & Sons.
Witvrouw, E., C. Sneyers, R. Lysens, J. Victor and J. Bellemans (1996). "Reflex response times of vastus medialis oblique and vastus lateralis in normal subjects and in subjects with patellofemoral pain syndrome." The Journal of Orthopaedic and Sports Physical Therapy 24(3): 160.
孟慶江 (1985). "運動傷害預防及處理與復健工作之探討."
陳天賜 and 鄭俊傑 (2001). "規律運動與運動傷害之探討." 淡江體育(4): 65-73.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top