|
1.Keeney, S., Giroux, C.N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375-384 (1997). 2.Sonoda, E. et al. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J. 17, 598-608 (1998). 3.Sung, P. & Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nature Rev. Mol. Cell Biol. 7, 739-750 (2006). 4.Heyer, W.-D., Ehmsen, K.T. & Liu, J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113-139 (2010). 5.Masson, J.-Y. & West, S.C. The Rad51 and Dmc1 recombinases: a non-identical twin relationship. Trends Biochem. Sci. 26, 131-136 (2001). 6.Masson, J.Y. et al. The meiosis-specific recombinase hDmc1 forms ring structures and interacts with hRad51. EMBO J. 18, 6552-6560 (1999). 7.Ogawa, T., Yu, X., Shinohara, A. & Egelman, E.H. Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259, 1896 (1993). 8.Conway, A.B. et al. Crystal structure of a Rad51 filament. Nature Struct. Mol. Biol. 11, 791-796 (2004). 9.Sheridan, S.D. et al. A comparative analysis of Dmc1 and Rad51 nucleoprotein filaments. Nucleic Acids Res. 36, 4057-4066 (2008). 10.Sung, P. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265, 1241 (1994). 11.Sehorn, M.G., Sigurdsson, S., Bussen, W., Unger, V.M. & Sung, P. Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange. Nature 429, 433-437 (2004). 12.Phadnis, N., Hyppa, R.W. & Smith, G.R. New and old ways to control meiotic recombination. Trends Genet. 27, 411-421 (2011). 13.Lee, J.Y. et al. Base triplet stepping by the Rad51/RecA family of recombinases. Science 349, 977 (2015). 14.Borgogno, M.V. et al. Tolerance of DNA mismatches in Dmc1 recombinase-mediated DNA strand exchange. J. Biol. Chem. 291, 4928-4938 (2016). 15.Lee, J.Y. et al. Sequence imperfections and base triplet recognition by the Rad51/RecA family of recombinases. J. Biol. Chem. 292, 11125-11135 (2017). 16.Bishop, D.K., Park, D., Xu, L. & Kleckner, N. DMC1: A meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439-456 (1992). 17.Bishop, D.K. RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79, 1081-92 (1994). 18.Shinohara, A., Ogawa, H. & Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457-470 (1992). 19.Schwacha, A. & Kleckner, N. Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90, 1123-1135 (1997). 20.Tsubouchi, H. & Roeder, G.S. Budding yeast Hed1 down-regulates the mitotic recombination machinery when meiotic recombination is impaired. Genes Dev. 20, 1766-75 (2006). 21.Busygina, V. et al. Hed1 regulates Rad51-mediated recombination via a novel mechanism. Genes Dev. 22, 786-795 (2008). 22.Cloud, V., Chan, Y.L., Grubb, J., Budke, B. & Bishop, D.K. Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337, 1222-5 (2012). 23.Brown, M.S., Grubb, J., Zhang, A., Rust, M.J. & Bishop, D.K. Small Rad51 and Dmc1 complexes often co-occupy both ends of a meiotic DNA double strand break. PLoS Genet. 11, e1005653 (2016). 24.Crickard, J.B., Kaniecki, K., Kwon, Y., Sung, P. & Greene, E.C. Spontaneous self-segregation of Rad51 and Dmc1 DNA recombinases within mixed recombinase filaments. J. Biol. Chem. 293, 4191-4200 (2018). 25.Pugh, B.F. & Cox, M.M. General mechanism for RecA protein binding to duplex DNA. J. Mol. Biol. 203, 479-93 (1988). 26.Gal, J., Schnell, R., Szekeres, S. & Kalman, M. Directional cloning of native PCR products with preformed sticky ends (autosticky PCR). Mol. Gen. Genet. 260, 569-573 (1999). 27.Fan, H.-F., Cox, M.M. & Li, H.-W. Developing single-molecule TPM experiments for direct observation of successful RecA-mediated strand exchange reaction. PLoS ONE 6, e21359 (2011). 28.Fan, H.F. & Li, H.W. Studying RecBCD helicase translocation along Chi-DNA using tethered particle motion with a stretching force. Biophys. J. 96, 1875-83 (2009). 29.Chung, C. & Li, H.-W. Direct Observation of RecBCD helicase as single-stranded DNA translocases. J. Am. Chem. Soc. 135, 8920-8925 (2013). 30.Liu, Y. et al. Conformational changes modulate the activity of Human RAD51 protein. J. Mol. Biol. 337, 817-827 (2004). 31.Lu, C.-H. et al. Swi5–Sfr1 stimulates Rad51 recombinase filament assembly by modulating Rad51 dissociation. Proc. Natl. Acad. Sci. 115, E10059 (2018). 32.Murayama, Y., Tsutsui, Y. & Iwasaki, H. The fission yeast meiosis-specific Dmc1 recombinase mediates formation and branch migration of Holliday junctions by preferentially promoting strand exchange in a direction opposite to that of Rad51. Genes Dev. 25, 516-527 (2011). 33.Brown, M.S. & Bishop, D.K. DNA strand exchange and RecA homologs in meiosis. Cold Spring Harb. Perspect. Biol. 7, a016659-a016659 (2014). 34.Tsubouchi, H. & Roeder, G.S. The budding yeast mei5 and sae3 proteins act together with dmc1 during meiotic recombination. Genetics 168, 1219-1230 (2004). 35.Hayase, A. et al. A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell 119, 927-940 (2004). 36.Ferrari, S.R., Grubb, J. & Bishop, D.K. The Mei5-Sae3 protein complex mediates Dmc1 activity in Saccharomyces cerevisiae. J. Biol. Chem. 284, 11766-11770 (2009).
|