跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:藍偉瑄
研究生(外文):Wei-Hsuan Lan
論文名稱:利用單分子技術探討同源重組酶Dmc1及Rad51核蛋白絲形成之成核偏好性
論文名稱(外文):Studying the nucleation preference of DNA recombinases Dmc1 and Rad51 during nucleoprotein filament formation using a single molecule method
指導教授:李弘文李弘文引用關係
指導教授(外文):Hung-Wen Li
口試委員:冀宏源詹迺立林敬哲范秀芳
口試委員(外文):Hung-Yuan (Peter) ChiNei-Li ChanJing-Jer LinHsiu-Fang Fan
口試日期:2019-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:55
中文關鍵詞:同源重組Rad51Dmc1DNA重組酶核蛋白絲單分子栓球實驗
DOI:10.6342/NTU201902036
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
同源重組酶Dmc1及Rad51在DNA雙股斷裂的修復中扮演重要角色。在同源重組修復過程中,重組酶會結合到受損DNA裸露出的3′單股DNA,形成核蛋白絲 (pre-synaptic filament),並尋找同源的雙股DNA,以同源雙股DNA作為修復模板,進行股交換反應 (strand exchange),完成高準確度的DNA修復。大部分真核生物同時具有Rad51及Dmc1兩個同源重組酶,兩者無論是序列、結構及功能,都具有高度相似性,其中Rad51會在細胞分裂及減數分裂細胞時被表達,但是Dmc1只出現於減數分裂的細胞中。關於減數分裂時同時需要這兩個同源重組酶的參與,雖然已有不少遺傳學或生化實驗提供線索,但至今仍然沒有明確的機制。在此篇論文中,我們利用單分子栓球實驗 (single-molecule tethered particle motion) 比較酵母菌 (Saccharomyces cerevisiae) Rad51及Dmc1形成核蛋白絲的動力學性質。核蛋白絲生成的過程中,在單股DNA上形成核種 (nucleation) 為速率決定步驟。我們發現到ScRad51與ScDmc1的成核動力學有明顯的差異: (1) ScRad51和ScDmc1成核時,對DNA結構具有不同的結合偏好;(2) ScRad51核蛋白絲形成的成核速率比ScDmc1來的快。ScRad51對於單股DNA的結合親和力比ScDmc1優越,因此ScRad51傾向成核於單股DNA。然而我們意外觀察到ScDmc1對於5′ 單/雙股DNA交界 (duplex DNA/ss DNA junctions) 具有顯著的偏好性,推測ScDmc1傾向成核於這些位置,並由5′ 端單股DNA往3′ 端延伸核蛋白絲 (extension)。這個5′ 單/雙股DNA交界的偏好性也存在小鼠的DMC1,顯示這個DNA結構偏好的一般性及重要性。另外,加入部分ScRad51核蛋白絲的DNA能有效提升ScDmc1成核速率,反應出Dmc1在有效成核過程中需要結構上的對接點 (docking sites),如單/雙股DNA交界或其他蛋白。我們的研究指出Rad51很可能利用其高DNA親和力,快速形成短的核蛋白絲,來幫助Dmc1在減數分裂中有效形成核及組裝蛋白絲。
Dmc1 and Rad51 recombinases play important roles in the DNA double strand break repair. During the homologous recombination, recombinase binds to the resected damaged DNA to form a nucleoprotein filament, responsible for homology pairing and strand exchange. Rad51 and Dmc1 both exist in most eukaryotic cells, sharing similar amino acid sequences, structures and functions. However, Rad51 is expressed in both mitotic and meiotic cells, but Dmc1 is a meiosis-specific recombinase. The underlying mechanism of this differential requirement is unclear. Here, we utilized single-molecule tethered particle motion experiments to compare the kinetics of nucleoprotein filament assembly of Saccharomyces cerevisiae Rad51 and Dmc1. Nucleation on single-stranded DNA (ssDNA) is the rate-limiting step of the nucleoprotein filament assembly. We found distinct differences of these two recombinases: (1) ScRad51 and ScDmc1 have different nucleation preferences of DNA structures. (2) The nucleation rate of ScRad51 is much faster than ScDmc1, indicating that ScRad51 has better ssDNA binding affinity, and preferentially assembles on ssDNA. However, ScDmc1 preferentially nucleates on DNA substrates with duplex DNA/ssDNA junction containing a 3′-ssDNA overhang, as it allows filament extension from 5′-to-3′ direction. Same 5′ ds/ssDNA junction preference is also found in mouse DMC1, suggesting the general and important role of this nucleation site preference for the Dmc1 recombinase. Surprisingly, in the DNA substrates containing short discontinuous patches of ScRad51, ScDmc1 assembly is stimulated. Our data imply that the nucleation of ScDmc1 on ssDNA requires docking sites, such as duplex DNA/ssDNA junction or Rad51 binding on ssDNA. Higher ssDNA affinity of ScRad51 might offer the nucleation docking sites for ScDmc1 assembly during meiosis.
謝辭 i
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 viii
第1章 緒論 1
1-1 減數分裂中同源重組機制 1
1-2 研究動機 7
第2章 實驗設計與方法 9
2-1 蛋白質純化與保存 9
2-2 DNA製備 9
351/dT90, 351/dT135 9
351/dT(45)n (n=2、3) DNA 及351/dT(45)2-flap DNA 10
351/dT(37+29+36) 10
2-3 緩衝溶液配方 13
2-4 單分子栓球實驗 13
2-5 反應槽製備 14
一般反應槽製備 14
矽烷化反應槽製備 14
2-6 顯微鏡參數 15
2-7 數據分析 15
布朗運動分析 15
成核速率分析 16
第3章 實驗結果與討論 19
3-1 比較ScRad51及ScDmc1 與DNA之結合 19
3-2 hDMC1及mDMC1也具有聚縮及回升現象 22
3-3 ScDmc1之延伸與回升具有類似動力學性質 24
3-4 ScRad51與ScDmc1具有不同成核偏好性 26
3-5 ScDmc1傾向成核於5''單/雙股DNA交界處 30
3-6 ScDmc1於5''單/雙股DNA交界處的成核偏好性不受離子濃度影響 33
3-7 mRAD51與mDMC1也具有不同成核偏好性 35
3-8 ScRad51作為ScDmc1核蛋白絲形成的輔助蛋白 39
第4章 結論 45
4-1 結果討論 45
比較Rad51及Dmc1 與DNA之結合 45
Dmc1與Rad51具有不同成核偏好性 46
ScRad51作為ScDmc1核蛋白絲形成的輔助蛋白 48
4-2 未來展望 52
參考文獻 53
1.Keeney, S., Giroux, C.N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375-384 (1997).
2.Sonoda, E. et al. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J. 17, 598-608 (1998).
3.Sung, P. & Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nature Rev. Mol. Cell Biol. 7, 739-750 (2006).
4.Heyer, W.-D., Ehmsen, K.T. & Liu, J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113-139 (2010).
5.Masson, J.-Y. & West, S.C. The Rad51 and Dmc1 recombinases: a non-identical twin relationship. Trends Biochem. Sci. 26, 131-136 (2001).
6.Masson, J.Y. et al. The meiosis-specific recombinase hDmc1 forms ring structures and interacts with hRad51. EMBO J. 18, 6552-6560 (1999).
7.Ogawa, T., Yu, X., Shinohara, A. & Egelman, E.H. Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259, 1896 (1993).
8.Conway, A.B. et al. Crystal structure of a Rad51 filament. Nature Struct. Mol. Biol. 11, 791-796 (2004).
9.Sheridan, S.D. et al. A comparative analysis of Dmc1 and Rad51 nucleoprotein filaments. Nucleic Acids Res. 36, 4057-4066 (2008).
10.Sung, P. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265, 1241 (1994).
11.Sehorn, M.G., Sigurdsson, S., Bussen, W., Unger, V.M. & Sung, P. Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange. Nature 429, 433-437 (2004).
12.Phadnis, N., Hyppa, R.W. & Smith, G.R. New and old ways to control meiotic recombination. Trends Genet. 27, 411-421 (2011).
13.Lee, J.Y. et al. Base triplet stepping by the Rad51/RecA family of recombinases. Science 349, 977 (2015).
14.Borgogno, M.V. et al. Tolerance of DNA mismatches in Dmc1 recombinase-mediated DNA strand exchange. J. Biol. Chem. 291, 4928-4938 (2016).
15.Lee, J.Y. et al. Sequence imperfections and base triplet recognition by the Rad51/RecA family of recombinases. J. Biol. Chem. 292, 11125-11135 (2017).
16.Bishop, D.K., Park, D., Xu, L. & Kleckner, N. DMC1: A meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439-456 (1992).
17.Bishop, D.K. RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79, 1081-92 (1994).
18.Shinohara, A., Ogawa, H. & Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457-470 (1992).
19.Schwacha, A. & Kleckner, N. Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90, 1123-1135 (1997).
20.Tsubouchi, H. & Roeder, G.S. Budding yeast Hed1 down-regulates the mitotic recombination machinery when meiotic recombination is impaired. Genes Dev. 20, 1766-75 (2006).
21.Busygina, V. et al. Hed1 regulates Rad51-mediated recombination via a novel mechanism. Genes Dev. 22, 786-795 (2008).
22.Cloud, V., Chan, Y.L., Grubb, J., Budke, B. & Bishop, D.K. Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337, 1222-5 (2012).
23.Brown, M.S., Grubb, J., Zhang, A., Rust, M.J. & Bishop, D.K. Small Rad51 and Dmc1 complexes often co-occupy both ends of a meiotic DNA double strand break. PLoS Genet. 11, e1005653 (2016).
24.Crickard, J.B., Kaniecki, K., Kwon, Y., Sung, P. & Greene, E.C. Spontaneous self-segregation of Rad51 and Dmc1 DNA recombinases within mixed recombinase filaments. J. Biol. Chem. 293, 4191-4200 (2018).
25.Pugh, B.F. & Cox, M.M. General mechanism for RecA protein binding to duplex DNA. J. Mol. Biol. 203, 479-93 (1988).
26.Gal, J., Schnell, R., Szekeres, S. & Kalman, M. Directional cloning of native PCR products with preformed sticky ends (autosticky PCR). Mol. Gen. Genet. 260, 569-573 (1999).
27.Fan, H.-F., Cox, M.M. & Li, H.-W. Developing single-molecule TPM experiments for direct observation of successful RecA-mediated strand exchange reaction. PLoS ONE 6, e21359 (2011).
28.Fan, H.F. & Li, H.W. Studying RecBCD helicase translocation along Chi-DNA using tethered particle motion with a stretching force. Biophys. J. 96, 1875-83 (2009).
29.Chung, C. & Li, H.-W. Direct Observation of RecBCD helicase as single-stranded DNA translocases. J. Am. Chem. Soc. 135, 8920-8925 (2013).
30.Liu, Y. et al. Conformational changes modulate the activity of Human RAD51 protein. J. Mol. Biol. 337, 817-827 (2004).
31.Lu, C.-H. et al. Swi5–Sfr1 stimulates Rad51 recombinase filament assembly by modulating Rad51 dissociation. Proc. Natl. Acad. Sci. 115, E10059 (2018).
32.Murayama, Y., Tsutsui, Y. & Iwasaki, H. The fission yeast meiosis-specific Dmc1 recombinase mediates formation and branch migration of Holliday junctions by preferentially promoting strand exchange in a direction opposite to that of Rad51. Genes Dev. 25, 516-527 (2011).
33.Brown, M.S. & Bishop, D.K. DNA strand exchange and RecA homologs in meiosis. Cold Spring Harb. Perspect. Biol. 7, a016659-a016659 (2014).
34.Tsubouchi, H. & Roeder, G.S. The budding yeast mei5 and sae3 proteins act together with dmc1 during meiotic recombination. Genetics 168, 1219-1230 (2004).
35.Hayase, A. et al. A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell 119, 927-940 (2004).
36.Ferrari, S.R., Grubb, J. & Bishop, D.K. The Mei5-Sae3 protein complex mediates Dmc1 activity in Saccharomyces cerevisiae. J. Biol. Chem. 284, 11766-11770 (2009).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top