跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2025/11/22 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:肖彬
研究生(外文):Xiao, Bin
論文名稱:基于卷积神经网络的癫痫病预测模型
論文名稱(外文):Epilepsy prediction with convolutional neural network
指導教授:莊仁輝劉建良劉建良引用關係
指導教授(外文):Chuang, Jen-HuiLiu, Chien-Liang
口試委員:盧鴻興李嘉晃莊仁輝劉建良
口試委員(外文):Lu, Horng-ShingLee, Chia-HoangChuang, Jen-HuiLiu, Chien-Liang
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:32
中文關鍵詞:癫痫病卷积神经网络深度学习
外文關鍵詞:epilepsy predictiondeep learningtransfer learning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:511
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
癲癇病是一種常見的腦疾病,其給患者帶來的最大困擾在於癲癇病會毫無徵兆的在任何地方,任何時間發作。針對於此,一個好的癲癇病發作預測的系統可以極大的改善患者的生活品質,減少患者的精神壓力。當前,如何建立一個可靠的癲癇病發作預測系統已經成為一個熱門的研究主題。EEG信號是一種大腦電位變化的信號。EEG信號被用來診斷癲癇病已經有數十年的歷史。一般癲癇病的預測問題,都會被轉換成二元分類的問題,主要是把preictal狀態的EEG信號和interictal狀態的EEG信號分開。本文中,我們分別使用了快速傅裡葉變換(FFT)和主成分分析法(PCA),分別在EEG信號的頻域和時域提取信號特徵。以這些特徵為基礎,我們提出了multi-view的卷積神經網路架構來解決癲癇病預測的問題。實驗結果表明,我們提出的方法要優於現有的方法。除此之外,我们研究了使用transfer learning 的方法来提升演算法的效能,实验结果表明,transfer learning能对演算法的效能带来一定的提升。
Epilepsy is one of the most common brain diseases, which can break out at anytime, anywhere. The unpredictability of seizure is often considered the most problematic aspect of epilepsy by the patients. A good epilepsy seizure predictor can help patients reduce the burden of unpredictability and improve patients’ life quality greatly. Therefore, a central theme in epilepsy treatments is to predict epilepsy seizure, so that patients can get a warning before epilepsy seizures take place. Electroencephalograms (EEGs) are recordings of the electrical potentials produced by the brain. EEG signals, together with patient behavior, have been used in the diagnosis of epilepsy for decades. Typically, researchers treat epilepsy seizure prediction as a binary classification problem aiming at discriminate cerebral state preictal state or interictal state. In this work, we apply two of the simplest and most popular EEG signal processing methods, Discrete Fourier Transform (FFT) and Principal Component Analysis (PCA), to generate features in frequency domain and time domain separately. With these features as input, we propose a multi-view Convolutional Neural Network model to solve seizure prediction problem. Experimental results show that our approach outperforms other existing solutions. We also explore to use transfer learning to improve the performance of our solution. The experiments show that our solution can benefit from transfer learning.
Contents
摘 要 i
Abstract ii
誌 謝 iii
Contents iv
List of Figures vi
List of Tables vii
1 Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Challenges 4
1.4 Research Aims 4
1.5 Thesis Organization 5
2 Related Works 6
2.1 Epilepsy prediction 6
2.2 Convolutional Neural Network 8
3 Multi-view Convolution Neutral Network 12
4 Experiments 16
4.1 Intracranial EEG Analysis 16
4.1.1 Dataset Description 16
4.1.2 Data Preprocessing 17
4.1.3 Architecture and Parameters 17
4.1.4 Results 18
4.2 Scalp EEG Analysis 21
4.2.1 Dataset Description 21
4.2.2 Patient-specific model evaluation 22
4.2.3 Transfer Representations among Patients 24
5 Discussions 26
6 Conclusion and Future Works 29
6.1 Conclusion 29
6.2 Limitation and Future Works 29
References 30


[1] R. Fisher, C. Acevedo, A. Arzimanoglou, A. Bogacz, J. Cross, C. Elger, J. Engel, L. Forsgren, J. French, M. Glynn, D. Hesdorffer, B. Lee, G. Mathern, S. Moshé, E. Perucca, I. Scheffer, T. Tomson, M. Watanabe and S. Wiebe, "ILAE Official Report: A practical clinical definition of epilepsy", Epilepsia, vol. 55, no. 4, pp. 475-482, 2014.
[2] P. Carney, S. Myers and J. Geyer, "Seizure prediction: Methods", Epilepsy & Behavior, vol. 22, pp. S94-S101, 2011.
[3] E. Magiorkinis, A. Diamantis, K. Sidiropoulou and C. Panteliadis, "Highights in the History of Epilepsy: The Last 200 Years", Epilepsy Research and Treatment, vol. 2014, pp. 1-13, 2014.
[4] A. H. Shoeb, "Application of machine learning to epileptic seizure onset detection and treatment," Massachusetts Institute of Technology, 2009.
[5] W. Zhang, R. Li, T. Zeng, Q. Sun, S. Kumar, J. Ye and S. Ji, "Deep Model Based Transfer and Multi-Task Learning for Biological Image Analysis", IEEE Transactions on Big Data, pp. 1-1, 2016.
[6] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 101(23):e215-e220
[7] K. Team, "American epilepsy society seizure prediction challenge", 2014.
[8] M. Bandarabadi, C. Teixeira, J. Rasekhi and A. Dourado, "Epileptic seizure prediction using relative spectral power features", Clinical Neurophysiology, vol. 126, no. 2, pp. 237-248, 2015.
[9] A. H. Shoeb and J. V. Guttag, "Application of machine learning to epileptic seizure detection," in Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010, pp. 975-982.
[10] P. Mirowski, D. Madhavan, Y. LeCun and R. Kuzniecky, "Classification of patterns of EEG synchronization for seizure prediction", Clinical Neurophysiology, vol. 120, no. 11, pp. 1927-1940, 2009.
[11] T. Alotaiby, S. Alshebeili, T. Alshawi, I. Ahmad and F. Abd El-Samie, "EEG seizure detection and prediction algorithms: a survey", EURASIP Journal on Advances in Signal Processing, vol. 2014, no. 1, p. 183, 2014.
[12] M. Parvez and M. Paul, "Epileptic Seizure Prediction by Exploiting Spatiotemporal Relationship of EEG Signals Using Phase Correlation", IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 1, pp. 158-168, 2016.
[13] B. Brinkmann, J. Wagenaar, D. Abbot, P. Adkins, S. Bosshard, M. Chen, Q. Tieng, J. He, F. Muñoz-Almaraz, P. Botella-Rocamora, J. Pardo, F. Zamora-Martinez, M. Hills, W. Wu, I. Korshunova, W. Cukierski, C. Vite, E. Patterson, B. Litt and G. Worrell, "Crowdsourcing reproducible seizure forecasting in human and canine epilepsy", Brain, vol. 139, no. 6, pp. 1713-1722, 2016.
[14] Shufang Li, Weidong Zhou, Qi Yuan and Yinxia Liu, "Seizure Prediction Using Spike Rate of Intracranial EEG", IEEE Trans. Neural Syst. Rehabil. Eng., vol. 21, no. 6, pp. 880-886, 2013.
[15] X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," in Aistats, 2010, pp. 249-256.
[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in neural information processing systems, 2012, pp. 1097-1105.
[17] V. Nair and G. E. Hinton, "Rectified linear units improve restricted boltzmann machines," in Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010, pp. 807-814.
[18] Y. B. Ian Goodfellow and A. Courville. Deep learning.Book in preparation for MIT Press, 2016.
[19] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
[20] H. Cecotti, "A time–frequency convolutional neural network for the offline classification of steady-state visual evoked potential responses", Pattern Recognition Letters, vol. 32, no. 8, pp. 1145-1153, 2011.
[21] H. Cecotti and A. Graser, "Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 3, pp. 433-445, 2011.
[22] M. Teplan, "Fundamentals of EEG measurement," Measurement science review, vol. 2, pp. 1-11, 2002.
[23] T. G. Dietterich, "Ensemble methods in machine learning," in International workshop on multiple classifier systems, 2000, pp. 1-15.
[24] R. M. Trigub and E. S. Belinsky, Fourier analysis and approximation of functions: Springer Science & Business Media, 2012.
[25] A. Delorme and S. Makeig, "EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis", Journal of Neuroscience Methods, vol. 134, no. 1, pp. 9-21, 2004.
[26] A. Lalkhen and A. McCluskey, "Clinical tests: sensitivity and specificity", Contin Educ Anaesth Crit Care Pain, vol. 8, no. 6, pp. 221-223, 2008.
[27] S. Pan and Q. Yang, "A Survey on Transfer Learning", IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, 2010.
[28] Kim, Yoon. "Convolutional neural networks for sentence classification." arXiv preprint arXiv:1408.5882 (2014).
[29] Zhang, Xiang, Junbo Zhao, and Yann LeCun. "Character-level convolutional networks for text classification." Advances in Neural Information Processing Systems. 2015.
[30] Sainath, Tara N., et al. "Deep convolutional neural networks for LVCSR." 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013.
[31] Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural algorithm of artistic style." arXiv preprint arXiv:1508.06576 (2015).
[32] Brigham, E. Oran, and Elbert Oran Brigham. The fast Fourier transform. Vol. 7. Englewood Cliffs, NJ: Prentice-Hall, 1974.
[33] Mao, Qirong, et al. "Learning salient features for speech emotion recognition using convolutional neural networks." IEEE Transactions on Multimedia 16.8 (2014): 2203-2213.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊