跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 04:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔣昇霖
研究生(外文):sheng lin Chiang
論文名稱:球磨矽的技術與矽產氫的效能研究
論文名稱(外文):Ball milling of silicon and its hydrogen generation performance
指導教授:蔡子萱蔡子萱引用關係
指導教授(外文):Tzu-Hsuan Tsai
口試委員:吳永富張本秀
口試委員(外文):Yung-Fu WuPen-Hsiu Chang
口試日期:2015-07-01
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
中文關鍵詞:矽、氫能源、分散、矽泥廢料、球魔
外文關鍵詞:Hydrogen energyDisperisionBall millingSilicon slurry waste
相關次數:
  • 被引用被引用:2
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
氫能源是最重要的潔淨能源之一,而目前的氫能源技術尤其是氫氣的製造與儲存上仍有許多值得研究的課題。本研究專注於利用矽顆粒來製造氫氣,並將氫氣應用於燃料電池裝置中發電,實驗探討多種影響產氫速度、產量等因素,結果顯示pH增加、升溫或攪拌溶液均有助於氫氣生成反應;利用超音波震盪反應系統,可大幅縮短獲得氫氣的誘導時間。另外,實驗發現矽粒徑越小,產氫速度越快,且獲得氫氣的誘導時間也越短。實驗利用球磨塑形矽,並討論相關因素影響,其中以Si: 0.5 mm ZrO2=1:10、600 rpm球磨10 hr,可使44 μm 矽磨成312 nm 矽。最後,嘗試以矽晶切割廢料產氫,並探討該矽泥產氫表現,同時將其成功應用於燃料電池發電。
Hydrogen energy is one of the most important clean energy, and currently many subjects about the manufacture and storage of hydrogen are studied. This research focused on producing hydrogen by silicon in NaOH(aq), and the produced hydrogen was used to generate electricity via a fuel cell. The effects of various factors on hydrogen production rate and yield were explored. The experimental results show that increasing pH and temperature or stirring solution were helpful to increase hydrogen generation rate. Using ultrasonic vibration could significantly reduce the incubation time to obtain hydrogen. In addition, the faster hydrogen generation and the shorter incubation time could be obtained by using the smaller silicon particles. In the study, we adopted ball milling to shape the silicon and discussed some milling effects on shaping were systematically investigated. By the ratio of Si:0.5 mmZrO2 =1:10 and 600 rpm-milling for 10 hr, the size of silicon reduced from 44 μm to 312 nm. Finally, we used the silicon slurry waste to produce hydrogen, and applied the hydrogen to generate electricity by a fuel cell successfully.
目錄

中文摘要…………………………………………………………………………………….....i
英文摘要…………………………………………………………………………………......ii
目錄…………………………………………………………………………………………...iii
表目錄.......................................................................................................................................v
圖目錄.....................................................................................................................................vi
第一章 緒論........................................................................................................................1
1-1 氫能源發展現況...............................................................................................1
1-2 氫能源之瓶頸與挑戰.......................................................................................2
1-3 資源化矽泥的重要性.......................................................................................5
1-4 研究動機與目的…………………………………………………………......7
第二章 文獻回顧…………………………………………………………………….......8
第三章 理論與分析技術......................................................................................................27
3-1 球磨原理……………………………………………………………………….27
3-2 分散原理…………………………………………………………………...30
3-3 產氫原理…………………………………………………………………….35
第四章 實驗設備與方法……………………………………………………………………37
4-1 實驗藥品與耗材……………………………………………………………...37
4-2 儀器設備……………………………………………………………………….38
4-3 分析儀器……………………………………………………………..………..38
4-4 實驗流程與步驟………………………………………………………………38
4-4-1 球磨法研磨矽…………………………………………………………38
4-4-2 粒子分散及測量……………………………………………………..39
4-4-3 產氫實驗………………………………………………………………41
4-4-4 產氫實驗後的分析…………………………………………………..45
第五章 結果與討論……………………………………………………………………….51
5-1 球磨參數對矽粒徑的影響…………………………………………...……..…51
5-1-1磨球與矽比例的影響…………………………………………………..51
5-1-2 磨球尺寸效應………………………………………………………….52
5-1-3 球磨轉數效應…………………………………………………………..55
5-1-4 球磨罐填充量效應……………………………………………………..56
5-1-5 球磨時間效應………………………………………………………..58
5-2 不同介質中矽粒子的分散與粒徑…………………………………….............59
5-3 矽產氫的分析………………………………………………………….........69
5-3-1 矽產氫的優勢………………………………………………………….69
5-3-2 NaOH濃度的效應…………………………………………….............71
5-3-3 溫度效應……………………………………………………………..76
5-3-4 擾動液體效應…………………………………………………………..78
5-3-5 矽的尺寸效應…………………………………………………………79
5-4 矽產氫後發電…………………………………………………………........81
第六章 結論………………………………………………………………………………….89
參考文獻
符號彙編
參考文獻

Alinejad Babak and Mahmoodi Korosh (2009). &;quot;A novel method for generating by hydrolysis of highly activated aluminum nanoparticle in pure water.&;quot; International Journal of Hydrogen Energy 34 : 7934-7938.
Baykara S.Z. (2004). &;quot;Hydrogen production by direct solar thermal decomposition of water, possibilities for improvement of process efficiency.&;quot; International Journal of Hydrogen Energy 29(14): 1451-1458.
Chourashiya M. G., Kim Y.H., Park C.N., Park C.J. (2014). &;quot;Hydrogenation and microstructural properties of hydriding combustion synthesized Mg-Ni-C composite ball-milled with NbF5 catalyst.&;quot; Journal of Alloys and Compounds 584: 47-55.
Czech E. and Troczynski T. (2010) &;quot;Hydrogen generation through massive corrosion of deformed aluminum in water.&;quot; International Journal of Hydrogen Energy 35: 1029-1037.
E-pH diagram : http://www.crct.polymtl.ca/ephweb.php.
Erogbogbo Folarin, Lin Tao, Tucciarone Phillip M, LaJoie Krystal M, Lai Larry, Patki Gauri D, et al. (2013).”On-Demand Hydrogen Generation using Nanosilicon:Splitting Water without Light,Heat,or Electricity.”NanoLetters 13(2): 451-456.
Fu X., Hu Y., Zhang T., Chen S. (2013). &;quot;The role of ball milled h-BN in the enhanced photocatalytic activity: A study based on the model of ZnO.&;quot; Applied Surface Science 280: 828-835.
Gai Wei Zhuo, Liu Wen Hui, Deng Zhen Yan, Zhou Jian Ge. (2012).”Reaction of Al powder with water for hydrogen generation under ambient condition.” International Journal of Hydrogen Energy 37:13132-13140.
Gamman J. (2005). &;quot;Production of Hydrogen, obtaining electric and thermal energy by water dissociation method.&;quot; International Journal of Hydrogen Energy 30(7): 807.
Grosjean M. H., Zidoune M., Roue L., Huot J. Y. (2006). &;quot;Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials.&;quot;International Journal of Hydrogen Energy 31: 109-119.
Grosjean Marie-Helene., Zidoune Moussa., Roue Lionwel. (2004). &;quot;Effect of ball milling on the corrosion resistance of magnesium in aqueous media.&;quot;Electrochimica Acta 49: 2461-2470.
Han J., Kim I. S., Choi K. S. (2002). &;quot;High purity hydrogen generator for on-site hydrogen production.&;quot; International Journal of Hydrogen Energy 27(10): 1043-1047.
Iwasaki W. (2003). &;quot;A consideration of power density and hydrogen production and utilization technologies.&;quot; International Journal of Hydrogen Energy 28(12): 1325-1332.
Kruger P. (2001). &;quot;Electric power requirement for large-scale production of hydrogen fuel for the world vehicle fleet.&;quot; International Journal of Hydrogen Energy 26(11): 1137-1147.
Kurlov A. S. and Gusev A. I. (2014). &;quot;High-energy milling of nonstoichiometric carbides: Effect of nonstoichiometry on particle size of nanopowders.&;quot; Journal of Alloys and Compounds 582: 108-118.
Lan C.W., Dimitrov D. Z., Lin C. H. (2011).”Nanotextured crystalline silicon solar cells”, Phys. Status Solidi A 208 12:2926–2933 (back cover of the issue) (SCI).
Ledjeff Hey K., Formanski V., Kalk Th., Roes J. (1998). &;quot;Compact hydrogen production systems for solid polymer fuel cells.&;quot; Journal of Power Sources 71(1-2): 199-207.
Liedke T. and Kuna M. (2011). “A macroscopic mechanical model of the wire sawing process.” International Journal of Machine Tools and Manufacture 51(9):711-720.
Mahmoodi Korosh and Alinejad Babak (2010).”Enhancement of hydrogem generation rate in reaction of aluminum with water.”International Journal of Hydrogen Energy 35:5227-5232.
Mehta R. N. (2014). &;quot;Impact ofhydrogen generated by splitting water with nano-silicon and nano-aluminum on diesel engine performance.&;quot;International Journal of Hydrogen Energy 39:8098-8105.
Mukhtar N. Z. F., Borhan M. Z., Abdullah S., Rusop M.(2013).”Nanozeolite Produced by Wet Milling at Different Milling Time.”Materials Science and Engineering 46
Pilus Energy : http://www.pilusenergy.wordpress.com. (2011)
Sarti D. and Einhaus R. (2002). “Silicon feedstock for the multi-crystalline photovoltaic industry.” Solar Energy Materials &;Solar Cells 72(1-4):27-40.
Shin Hyunho, Lee Sangwook, Jung Hyun Suk, Kim Jong-Bong (2013).”Effect of ball size and powder loading on the milling efficiency of a ;aboratory-scale wet ball mill.”Ceramics International 39:8963-8968.
Tsai T. H. and Huang J. H. (2009).”Metal removal from silicon sawing waste using the electrokinetic method.” Journal of Taiwan Institute of Chemical Engineers
Varol T. and Canakci A. (2013). &;quot;Effect of particle size and ratio of B4C reinforcement on properties and morphology of nanocrystalline Al2024-B4C composite powders.&;quot; Powder Technology 246: 462-472.
Yu J., Chun Xu., Zonghu He. (2004). &;quot;Electrochemical hydrogen storage in nanosized amorphous NixB particles.&;quot; Journal of the Electrochemical Society 151(8): A1124-A1127.
肖素萍,陳林,王獻忠,文忠和,張西玲,向芸,分散劑對銦錫氧化物(ITO)粉末粒徑的影響,2010。
楊卉,張幼珠,奈米氧化鋅的分散性研究,2005。
趙崧傑,鋰離子電池多孔性鎳矽複合負極材料製備與分析,台灣大學,2007。
高濂,孫靜,劉陽橋,奈米粉體分散及表面改性,2005年。
李金平,吳疆,梁德青,郭開華,王如竹,齊學義,奈米粒子懸浮液中分散劑選擇的實驗研究,蘭州理工大學,2006。
大學入學中心,www.ceec.edu.tw,2007年。
朱協彬,段學臣,陳海清,3種分散劑ITO漿料穩定性能的影響,中國有色金屬學報,2007。
市川勝,圖解氫能源,世茂出版公司,2009年。
中國氫能網,http://www.china-hydrogen.org/,2010年。
邱昱仁,氫能與燃料電池,北台灣科學技術學院機械工程學系,2010年。
吳乃立、劉偉仁、謝登存、吳弘俊,用 於鋰離子二次電池的負極活性材料、其製備方法及含此負極活性材料之鋰離子二次電池,中華民國專利編號:I332277,2010年。
林揚智,矽奈米粉體分散穩定性之探討,台灣科技大學,2010年。
互動百科,www.baike.com,2011年。
鄭光煒,前瞻能源技術-太陽能製氫技術,長庚大學,2012年。
譚兆鵬,自矽晶切片廢渣中回收矽與碳化矽之研究,台北科技大學,2013年。
陳秀靜,醇類燃料電池觸媒電極,台北科技大學,2015年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top