跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.167) 您好!臺灣時間:2025/11/01 00:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃詩芸
研究生(外文):Huang, Shih-Yun
論文名稱:應用於下視網膜植入具電荷泵升壓電路之雙向共用電極180奈米互補式金氧半256像素感測及雙向電流刺激晶片設計
論文名稱(外文):The Design of 180-nm CMOS 256-Pixel Sensing and Biphasic Current Stimulation Chips with Bidirectional-Sharing Electrodes and Charge Pump for Subretinal Prosthesis
指導教授:吳重雨
指導教授(外文):Wu, Chung-Yu
口試委員:柯明道邱進峯謝志成
口試委員(外文):Ker, Ming-DouChiu,Chin-FengHsieh,Chih-Cheng
口試日期:2019-01-25
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:90
中文關鍵詞:下視網膜植入雙向共用電極
外文關鍵詞:Subretinal ProsthesisBidirectional-Sharing Electrodes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本篇論文提出及分析應用於下視網膜互補式金氧半太陽能電池256像素刺激晶片移植系統,晶片採用台積電0.18um互補式金氧半CIS製程工藝,尺寸為3.2mm x 3.2mm。在紅外光強為96 mW/cm2,訊號光源為15,000Lux確保最大刺激,量測晶片產生的電刺激,最大刺激電流為12.4uA,刺激頻率為17.5Hz。
晶片架構採用雙向共用電極(BDSEs)搭配分區供電方式(DPSS),使電極面積在相同晶片面積下提升,進而將刺激電荷大幅提升至15.3nC。另外,採用具跨導放大器的積分器來提升光電流積分時的線性度。且利用調整背景光消除電路中的電流源,使影像動態範圍提升至30.19dB,最大可感測光強為9393Lux。接著,利用鍍有具生物相容性的IrOx之晶片進行體外實驗,驗證晶片產生的電刺激能有效使rd1老鼠的視網膜神經節細胞產生相對應的反應。
在下一版改善的電路模擬結果中,顯示利用自動適應光源像素電路,能讓主動式像素元件和人眼一樣適應不同數量級的光強,使晶片在一般使用強度下,影像動態範圍提升至60dB,最小和最大感測光強分別為100Lux和100,000Lux。在和上一版相同刺激電荷下,最大功耗也因採用自動適應光源像素電路而下降至原先的1.94倍。改良的刺激器可輸出恆定電流雙向刺激,雙向刺激電流差由原先的34.2%縮小至0.74%,刺激電荷差由原先的53.9%縮小至2.76%。且在分區供電的基礎下,更改同時刺激的像素排列方式,使同時刺激不同像素之間最大刺激電荷差由上一版的30%縮小至12.2%,且最大誤刺激只有0.91nC並不會達到有效刺激。
A photovoltaic-cell-powered CMOS 256-pixel subretinal chips is fabricated by 180-nm CIS technology. The maximum stimulation current is 12.4uA with stimulation frequency of 17.5Hz under the illumination of 15,000lux signal light source and 96mW/cm2 IR intensity. The stimulation charge is increased significantly with the implementation of bidirectional-sharing electrodes (BDSEs) to 15.3nC. Also, the current integrator consists of an OTA is used to improve the linearity of photocurrent integration. The image dynamic range is increased to 30.19dB with the maximum detectable illuminance of 9393Lux with larger unit current source in the proposed adaptive background cancellation circuit (ABCC). In vitro patch clamp experimental results with the retinas of rd1 mice show that the proposed subretinal chip can stimulate and generate ganglion cell responses, which follows the stimulation frequency of 11.3Hz.
In the modified chip design, the adaptation of different image light intensities mimics the logarithmic responsivity of the photoreceptor in the human retina with the modified auto-adaptive pixel circuit. The image dynamic range is raised further to 60dB with minimum detectable illuminance of 100Lux and with maximum detectable illuminance of 10,000Lux. Under uniform light illumination, the photo response curve works in a range of two orders of magnitude as human retina. The maximum power consumption is decreased 1.94 times compared with the previous chip. Also, the current mismatch of biphasic stimulation is decreased significantly from 34.2% to 0.74% and the charge mismatch is decreased from 53.9% to 2.76% with the modified constant current stimulator (CCS). Furthermore, the difference of stimulation charge at the same phase is greatly reduced from 30% to 12.2% compared with the previous chip with the new phase configuration in divisional power supply scheme (DPSS). In addition, the maximum cross-talk is 0.91nC, which is below the stimulation threshold charge.
CONTENTS
ABSTRACT (CHINESE) i
ABSTRACT (ENGLISH) ii
ACKNOWLEDGEMENTS iv
CONTENTS v
TABLE CAPTIONS vii
FIGURE CAPTIONS viii

CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Review on the Subretinal Prostheses 4
1.3 Motivation 9
1.4 Main Results 11
1.5 Thesis Organization 13
CHAPTER 2 CHIP ARCHITECTURE AND CIRCUIT DESIGN 15
2.1 System And Chip Architecture 15
2.2 Circuit Design 21
2.2.1 Divisional Power Supply Scheme (DPSS) and Bidirectional-Sharing Electrodes (BDSEs) 21
2.2.2 Two-dimensional Equivalent Electrode Model for Cross-talk Simulation 24
2.2.3 Adaptive Background Cancellation Circuit (ABCC) and Pixel Circuit 29

2.2.4 Charge Pump Circuit [27] and Control Signal Generator [29] 35
2.3 Temperature Measurement using On-Chip NPN transistor 41
2.4 Post Simulation Results 45
CHAPTER 3 EXPERIMENTAL RESULTS 48
3.1 Measurement Results of Subretinal Chips 48
3.1.1 Measurement Setup 48
3.1.2 Measurement Results 53
3.2 In Vitro Results of Subretinal Chips 60
3.2.1 Measurement Setup 60
3.2.2 Measurement Results 62
3.3 Discussion 64
CHAPTER 4 Modified Circuit Design 68
4.1 Circuit Design 68
4.1.1 Auto-Adaptive Pixel Circuit [45] 69
4.1.2 Constant Current Stimulator (CCS) 71
4.1.3 Voltage Regulation Circuit 73
4.1.4 Phase Configuration in DPSS 75
4.2 Post Simulation Results 77
4.3 Discussion 80
CHAPTER 5 Conclusions and Future Work 81
5.1 Conclusions 81
5.2 Future Work 82

REFERENCES 83
VITA 90
REFERENCES
[1] C.Hamel,”Retinitis pigmentosa,” Orphanet Journal of Rare Diseases, vol. 1, no.1 , article no. 40 ,2006.
[2] D. S. Friedman, B. J. O'Colmain, B. Munoz, S. C. Tomany, C. McCarty et al., “Prevalence of age-related macular degeneration in the United
States,” Arch Ophthalmol, vol. 122, no. 4, pp. 564-572, April 2004.
[3] G. Brindley and W. Lewin "The sensation produced by electrical stimulation of the visual cortex," Journal of Physiology, vol. 196, pp. 479–93, May 1968.
[4] A. Majji, M. Humayun, J. Weiland, S. Suzuki, S. D’Anna, and E. deJuan Jr. "Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs," Investigative Ophthalmology and Visual Science, vol. 40 , pp. 2073–81, Aug. 1999.
[5] P. Walter, P. Szurman, M. Vobig, H. Berk, H. Ludtke-Handjery, H.Richter, et. al., "Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits". Retina , vol. 19 , pp. 546–52, 1999.
[6] K. Sooksood, E. Noorsal, J. Becker, and M. Ortmanns, “A neural stimulator front-end with arbitrary pulse shape, HV compliance and adaptive supply requiring 0.05 mm in 0.35 m HVCMOS,” in IEEE ISSCC Dig. Tech. Papers, 2011, pp. 306–307.
[7] C.-C. Chiao, Y.-T. Yang, C. Wan, W.-C. Yang, L.-J. Lin, P.-K. Lin, and C.-Y. Wu,” Responses of rabbit retinal ganglion cells to subretinal
electrical stimulation with a silicon-based microphotodiode array,” ARVO Abstract. Invest. Ophtha. Vis. Sci., vol. 33, no. 4, pp. 1048-1992 , May 2010.
[8] K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, and W. Liu, “An integrated 256-channel epiretinal prosthesis,” in IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1946–1956, Sept. 2010.
[9] K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, and W. Liu, “A 37.6mm2 1024-Channel High-Compliance -Voltage SoC for Epiretinal Prostheses,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 294-296.
[10] J. Ohta, T. Tokuda, K Kagawa, “Laboratory investigation of microelectronics-based stimulators for large-scale suprachoroidal transretinal
stimulation (STS),”in J Neural Eng., vol. 4, pp. 85–91, Mar. 2007.
[11] T. Tokuda, T. Ito, T. Kitao, T. Noda, K. Sasagawa, and Y. Terasawa et al., “CMOS-based smart-electrode-type retinal stimulator with bulletshaped bulk Pt electrodes,” in Proc. IEEE Eng. Med. Biol. Soc. Conf., 2011, pp. 6733–6736.
[12] P. Matteucci, P. Byrnes-Preston, S. Chen, N. Lovell, and G. Suaning, “Arm-based visual processing system for prosthetic vision,” in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, 2011, pp. 3921 –3924.
[13] K. Mathieson, J. Loudin, G. Goetz, P. Huie, L. Wang, T. I. Kamins, L. Galambos, R. Smith, J. S. Harris, A. Sher and D. Palanker,
“Photovoltaic retinal prosthesis with high pixel density,” Nature Photonics, vol. 6, pp. 391-397, May 2012.
[14] Boinagrov, D. et al., “Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance,” Biomedical Circuits and Systems, vol. 10, no. 1, pp. 85–97, Jan. 2016.
[15] C.-L. Lee and C.-C. Hsieh, “A 0.8-V 4096-pixel CMOS sense-andstimulus imager for retinal prosthesis,” IEEE Trans. Electron Devices,
vol. 60, no. 3, pp. 1162–1168, Mar. 2013.
[16] S. Oh, J.-H. Ahn, S. Lee, H. Ko, J. M. Seo, Y.-S. Goo, and D. Cho, “Light-Controlled Biphasic Current Stimulator IC Using CMOS Image Sensors for High-Resolution Retinal Prosthesis and In Vitro Experimental Results With rd1 Mouse,” IEEE Transactions on Biomedical Engineering, vol. 62, pp. 70-79, 2015.
[17] F. Yang, M.Y. Chang, C.H. Yang, C.C. Teng, and L.S. Fan, "Flexible high-density microphotodiode array with integrated sputtered iridium oxide electrodes for retinal stimulation," J. of Micro/Nanolitho. MEMS and MOEMS, vol. 15, pp. 015002-015002, Mar. 2016.
[18] A. Rothermel, “A 1600-pixel subretinal chip with DC-free terminals and ±2V supply optimized for long lifetime and high stimulation efficiency,” in ISSCC Dig. Tech. Papers, pp. 144-602, Feb. 2008.
[19] L. Liu, J. Wuenschmann, N. Pour Aryan, A. Zohny, M. Fischer, S. Kibbel, A. Rothermel, “An ambient light adaptive subretinal stimulator,“ European Solid-State Circuits Conference (ESSCIRC), Athens, pp. 420- 423, Sept. 2009.
[20] B. Bosse, E. Zrenner, and R. Wilk, “Standard ERG Equipment Can Be Used to Monitor Functionality of Retinal Implants,” in Proc. IEEE Eng. Med. Biol. Soc. Conf., pp. 1089-92, 2011.
[21] C. Brendler, N. P.Aryan, V. Rieger, A. Rothermel, “Wireless power delivery for a biomedical retinal prosthesis” Electronics, Circuits, and Systems (ICECS), Dec. 2013, pp.465-468.
[22] K. Stingl, K. U. Bartz Schmidt, D. Besch, A. Braun, A. Bruckmann, F. Gekeler, U. Greppmaier, S. Hipp, G. Hortd ¨ orfer, C. Kernstock, ¨ A. Kusnyerik, A. Schatz, K. T. Stingl, T. Peters, B. Wilhelm, and E. Zrenner, “Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS,” Proc. Royal Soc. B: Biol. Sci., vol. 280, no. 1757, pp. 1–8, Apr. 2013.
[23] A. Rothermel, “Recent Results With Subretinal Stimulation,” IEEE Biomedical Circuits and Systems Conference (BioCAS), 2014.
[24] P.-K. Lin, P.-H. Kuo, Y.-C. Tsai, M.-J. Sui, C.-C. Chiao, T. Noda, J. Ohta, and C.-Y. Wu, “The ex vivo and in vivo electrophysiological
investigations of a subretinal photovoltaic prosthesis embedded with solar cells and divisional-power-supply-scheme,” in TEATC (World
Research Congress: The Eye and The Chip), 2014.
[25] C.-Y. Wu, W.-J. Sung, P.-H. Kuo, C.-K. Tzeng, C.-C. Chiao, and Y.-C. Tsai, “The design of CMOS self-powered 256-pixel implantable chip
with on-chip photovoltaic cells and active pixel sensors for subretinal prostheses,” IEEE Biomedical Circuits and Systems Conference (BioCAS), 2015.
[26] C.-Y. Wu, P.-H. Kuo, P.-K. Lin, P.-C. Chen, W.-J. Sung, Jun Ohta, Takashi Tokuda, and Toshihiko Noda, “A CMOS 256-Pixel Photovoltaics-Powered Implantable Chip with Active Pixel Sensors and Iridium-Oxide Electrodes for Subretinal Prostheses,” Sensors and Materials, vol. 30, no. 2 ,2018.
[27] C.-Y. Wu, P.-H. Kuo, O.-Y. Wong, C.-K. Tzeng, C.-C. Chiao, P.-H. Chen, P.-C. Chen, Y.-C. Tsai, J. Ohta, T. Tokuda, and T. Noda, “The Improved Design of CMOS 256-Pixel Self-Photovoltaics-Powered Subretinal Prosthetic Chip with Charge Pump Circuit and Its in Vitro Experimental Results with Rd1 Mice,” To be submitted to TBE.
[28] W.-J. Sung, “The Design of 180-nm CMOS 256-Pixel Sensing and Biphasic Stimulation Chips with on-chip Photovoltaic cells and Divisional Power Suplly Scheme for Subretinal Prothseses,” Master thesis, Institute of Electronics , National Chiao Tung University, 2016.
[29] J.-H. Liao, “The Design of 180-nm CMOS 480-Pixel Sensing and Biphasic Current Stimulation Chips with Four Directional Sharing Electrodes and Charge Pump for Subretinal Prosthesis,” Master thesis, Institute of Electronics, National Chiao Tung University, 2018.
[30] C.-Y. Wu, P.-K. Lin, J. Lin, C. Yang, C. Wan, “Power controlling apparatus applied to biochip and operating method thereof.” U.S. Patent 7
622 702, Mar. 12, 2009.
[31] O.-Y. Wong, P.-H. Chen, and C.-Y. Wu, “A Fully-Integrated Charge Pump for Self-Powered Implantable Retinal Prostheses,” IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2016.
[32] G. Yang, X. Yu, and S. Lun, “A new analytical method for the extraction of series resistance of solar cell,” International Conference on Mechatronics and Control (ICMC), July 3 - 5, 2014.
[33] Z. Chen, M.-K. Law, P.-I. Mak, and Rui P. Martins, “A Single-Chip Solar Energy Harvesting IC Using Integrated Photodiodes for Biomedical Implant Applications,” Transactions on biomedical circuits and systems, vol. 11, no. 1, 2017.
[34] S. Negi, R. Bhandari, L. Rieth, and F. Solzbacher, “In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays,” Biomed.Mater., vol. 5, 2010.
[35] V. Rieger , F. Buntz , C. Feller and A. Rothermel, “Low-Latency System for Evaluation of Image-Enhancement-Algorithms on Patients using Subretinal Implants,” Engineering in Medicine and Biology Society (EMBC), 05 November 2015.
[36] H. C. Stronks and G. Dagnelie, “The functional performance of the Argus II retinal prosthesis,” Expert review of medical devices, vol. 11, no. 1, pp. 23-30, 2014.
[37] U. S. Food and Drug Administration/Center for Drug Evaluation and Research. “Active implantable medical devices. General requirements for safety, marking and information to be provided by the manufacturer,” 1998.
[38] C. Q. Huang, R. K. Shepherd, P. M. Seligman, and B. Tabor, "Electrical stimulation of the auditory nerve: direct current measurement in vivo," IEEE Transactions on biomedical engineering, vol. 46, no. 4, pp. 461-469, 1999.
[39] D. R. Merrill, M. Bikson, and J. G. Jefferys, "Electrical stimulation of excitable tissue: design of efficacious and safe protocols," Journal of neuroscience methods, vol. 141, no. 2, pp. 171-198, 2005.
[40] R. J. Jensen and J. F. Rizzo III, “Activation of retinal ganglion cells in wild-type and rd1 mice through electrical stimulation of the retinal neural network,” in Vis Res, vol. 48, pp. 1562–8, 2008.
[41] M. A.P. Pertijs and J. K. Huijsing, Precision Temperature Sensors in CMOS Technology. Springer Science & Business Media, 2006.
[42] B. Sakmann and O.D. Creutzfeldt. “ Scotopic and mesopic light adaption in the cat’s retina.” Pflügers Archives, 313 (1969), pp. 168-185, June 1969.
[43] J. Ohta, Smart CMOS Image Sensors and Applications Boca Raton, FL, USA : CRC Press, 2007.
[44] R. G. H. Wilke, et al. “ Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants.” in J Neural Eng., vol. 8, pp. 046016, Jun. 2011.
[45] S. Mafrica et al., "A bio-inspired analog silicon retina with Michaelis-Menten auto-adaptive pixels sensitive to small and large changes in light," Optics express, vol. 23, no. 5, pp. 5614-5635, 2015.
[46] M. Abramian, N. H. Lovell, A. Habib, J. W. Morley, G. J. Suaning, and S. Dokos, "Quasi-monopolar electrical stimulation of the retina: a computational modelling study," Journal of neural engineering, vol. 11, no. 2, pp. 025002, 2014.
[47] M. Coltheart, “The Persistences of Vision,” Philosophical Transactions of the Royal Society of London B: Biological Sciences, vol. 290, pp. 57-69, 1980.
[48] C. Q. Huang, R. K. Shepherd, P. Center, P. M. Seligman, and B. Tabor, "Electrical stimulation of the auditory nerve: direct current measurement in vivo," IEEE Transactions on biomedical engineering, vol. 46, no. 4, pp. 461-469, 1999.
[49] B. Goldstein, D. Kim, J. Xu, T. K. Vanderlick, and E. Culurciello, “CMOS Low Current Measurement System for Biomedical Applications” IEEE Transactions on biomedical circuits and systems, vol. 6, no. 2, Apr. 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 應用於帕金森症閉迴路深部腦刺激具雜訊去除電路之四通道互補式金氧半類比前端放大器設計
2. 應用於植入式醫療元件腦皮層電圖與電誘發複合活動電位紀錄之互補式金氧半類比前端生理訊號截取電路設計
3. 用於植入式生醫晶片系統整合之低功率十位元/十二位元每秒十萬次取樣混合型/電容分裂型逐次漸進式類比數位轉換器與電極組織阻抗量測電路
4. 應用於人工耳蝸差動視窗逐次漸進式類比數位轉換器與電極組織阻抗量測電路設計
5. 應用於人體癲癇與帕金森氏症治療之互補式金屬氧化物半導體積體電路系統單晶片與閉迴路神經調控系統設計
6. 應用於醫療腦電訊號截取之八通道互補式金氧半類比前端放大器與經顱直流電刺激之腦電訊號系統設計
7. 應用於下視網膜植入具電荷泵升壓電路之四向共用電極180奈米互補式金氧半480像素感測及雙向電流刺激晶片設計
8. 應用於植入式人工耳蝸之13.56-MHz互補式金氧半電感耦合電源與晶片系統設計與分析
9. 應用於局部場電位訊號紀錄之六十五奈米互補式金氧半八通道耐受正負六伏特共模雜訊與正負十毫伏特差模雜訊之類比前端生理訊號截取電路設計
10. 應用於下視網膜植入具電荷泵升壓電路之180奈米互補式金氧半光伏供電256像素感測及雙向刺激晶片設計
11. 應用於下視網膜植入具光伏特電池及分區供電之180奈米互補式金氧半256像素感測及雙向刺激晶片設計
12. 應用於下視網膜植入具閉迴路電荷泵升壓電路與雙向共用電極180奈米互補式金氧半自動適應光源256像素感測及雙向電流刺激晶片之設計
13. 應用於植入式生醫元件之互補式金氧半13.56-MHz高效率主動式一/三倍壓整流器和低壓降穩壓器之設計
14. 應用於植入式生醫元件之互補式金氧半 13.56-MHz 具有低功率脈衝式負載鍵移調變電路和被動相位鍵移調變器之功率與雙向數據遙測系統設計
15. 應用於腦電訊號紀錄具載波調變放大器與差動混和型逐次漸進式類比數位轉換器之六十五奈米互補式金氧半八通道類比前端電路設計