|
陳肇夏。1998。臺灣的變質岩。臺灣地質系列第11號,經濟部中央地質調查所編印。144頁。 劉滄棽、郭鴻裕、朱戩、連深。2007。台灣東部蛇紋岩母質化育土壤地區重金屬特性之初探。臺灣農業研究。56:65-78。 Alexander, E. 2004. Serpentine soil redness, differences among peridotite and serpentinite materials, Klamath Mountains, California. Int Geol Rev. 46: 754-764. Becquer, T., C. Quantin, S. Rotte‐Capet, J. Ghanbaja, C. Mustin and A. Herbillon. 2006. Sources of trace metals in Ferralsols in New Caledonia. Eur J. Soil Sci. 57: 200-213. Becquer, T., C. Quantin, M. Sicot and J. Boudot. 2003. Chromium availability in ultramafic soils from New Caledonia. Sci. Total Environ. 301: 251-261. Blake, G. R., A. Klute, K. H. Hartge and A. Klute 1986. Bulk Density Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. Bosco, G. L. 2013. Development and application of portable, hand-held X-ray fluorescence spectrometers. TrAC-Trend Anal. Chem. 45: 121-134. Brady, N. C. and R. R. Weil. 2010. Elements of the nature and properties of soils, Pearson Educational International Upper Saddle River, NJ. Brent, R. N., H. Wines, J. Luther, N. Irving, J. Collins and B. L. Drake. 2017. Validation of handheld X-ray fluorescence for in situ measurement of mercury in soils. J. Environ. Chem. Eng. 5: 768-776. Brooks, R. R. 1987. Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press. Charlet, L. and A. A. Manceau. 1992. X-ray absorption spectroscopic study of the sorption of Cr (III) at the oxide-water interface: II. Adsorption, coprecipitation, and surface precipitation on hydrous ferric oxide. J. Colloid Interf. Sci. 148: 443-458. Corsi, J., A. L. Giudice, A. Re, A. Agostino and F. Barello. 2018. Potentialities of X-ray fluorescence analysis in numismatics: the case study of pre-Roman coins from Cisalpine Gaul. Archaeol. Anthrop. Sci. 10: 431-438. Dik, J., K. Janssens, G. Van Der Snickt, L. van der Loeff, K. Rickers and M. Cotte. 2008. Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal. Chem. 80: 6436-6442. Gardner, W. H. 1986. Water content. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods: 493-544. Gee, G. W. and J. W. Bauder. 1986. Particle-size analysis1. Methods of soil analysis: Part 1—Physical and mineralogical methods: 383-411. Gough, L. P., G. Meadows, L. L. Jackson and S. Dudka. 1989. Biogeochemistry of a highly serpentinized, chromite-rich ultramafic area, Tehama County, California, USGPO; For sale by the Books and Open-File Reports Section, US Geological Survey, Federal Center. Hall, G. E., G. F. Bonham-Carter and A. Buchar. 2014. Evaluation of portable X-ray fluorescence (pXRF) in exploration and mining: Phase 1, control reference materials. Geochem-Explor. Env. A. 14: 99-123. Hoffman, M. A. and D. Walker. 1978. Textural and chemical variations of olivine and chrome spinel in the East Dover ultramafic bodies, south-central Vermont. Geol. Soc. Am. Bull. 89: 699-710. Hseu, Z.-Y. 2006. Extractability and bioavailability of zinc over time in three tropical soils incubated with biosolids. Chemosphere 63: 762-771. Hu, W., B. Huang, D. C. Weindorf and Y. Chen. 2014. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry. Bull. Environ. Contam. Toxicol. 92: 420-426. Ilton, E., C. Moses and D. Veblen. 2000. Using X-ray photoelectron spectroscopy to discriminate among different sorption sites of micas: with implications for heterogeneous reduction of chromate at the mica-water interface. Geochim. Cosmochim. Ac. 64: 1437-1450. Ilton, E. S. and D. R. Veblen. 1994. Chromium sorption by phlogopite and biotite in acidic solutions at 25 C: Insights from X-ray photoelectron spectroscopy and electron microscopy. Geochim. Cosmochim. Ac. 58: 2777-2788. Kalnicky, D. J. and R. Singhvi. 2001. Field portable XRF analysis of environmental samples. J. Hazard. Mater. 83: 93-122. Kaupenjohann, M. and W. Wilcke. 1995. Heavy metal release from a serpentine soil using a pH-stat technique. Soil Sci. Soc. Am. J. 59: 1027-1031. Kenna, T. C., F. O. Nitsche, M. M. Herron, B. J. Mailloux, D. Peteet, S. Sritrairat, E. Sands and J. Baumgarten. 2011. Evaluation and calibration of a Field Portable X-Ray Fluorescence spectrometer for quantitative analysis of siliciclastic soils and sediments. J. Anal. At. Spectrom. 26: 395-405. Laiho, J. and P. Peramaki. 2005. Evaluation of portable X-ray fluorescence (PXRF) sample preparation methods. Special Paper-Geological Survey of Finland 38: 73. Malpas, J. 1992. Serpentine and the geology of serpentinized rocks. The Ecology of areas with serpentinized rocks. Springer: 7-30. Markowicz, A. A. 2008. Quantification and correction procedures. Portable X-ray Fluorescence Spectrometry: 13-38. McGrath, S. and P. Loveland. 1995. Heavy metals in soils. Blackie Academic and Professional, Glasgow, UK 152: 368. McKeague, J. and J. Day. 1966. Dithionite-and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian J. soil Sci. 46: 13-22. McLean, E. 1982. Soil pH and lime requirement. Methods of soil analysis. Part 2. Chemical and microbiological properties: 199-224. Mehra, O. and M. Jackson. 1960. Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. Clays and clay minerals: proceedings of the Seventh National Conference, Elsevier. Mäkinen, E., M. Korhonen, E.-L. Viskari, S. Haapamäki, M. Järvinen and L. Lu. 2006. Comparison of XRF and FAAS methods in analysing CCA contaminated soils. Water Air Soil Poll. 171: 95-110. Neumann, P. M. and A. Chamel. 1986. Comparative phloem mobility of nickel in nonsenescent plants. Plant physiol. 81: 689-691. Oze, C., S. Fendorf, D. K. Bird and R. G. Coleman. 2004. Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. Am. J. Sci. 304: 67-101. Page, A., R. Miller and D. Keeney. 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy. Soil Sci. Soc. Am. Potts, P. J., M. H. Ramsey and J. Carlisle. 2002. Portable X-ray fluorescence in the characterisation of arsenic contamination associated with industrial buildings at a heritage arsenic works site near Redruth, Cornwall, UK. J. Environ. Monitor. 4: 1017-1024. Potts, P. J. and M. West 2008. Portable X-ray fluorescence spectrometry: Capabilities for in situ analysis. Royal Society of Chemistry. Potts, P. J., O. Williams‐Thorpe and P. C. Webb. 1997. The bulk analysis of silicate rocks by portable X‐ray fluorescence: effect of sample mineralogy in relation to the size of the excited volume. Geostand. Geoanal. Res. 21: 29-41. Quantin, C., T. Becquer, J. Rouiller and J. Berthelin. 2002. Redistribution of metals in a New Caledonia Ferralsol after microbial weathering. Soil Sci. Soc. Am. J. 66: 1797-1804. Rabenhorst, M., J. Foss and D. Fanning. 1982. Genesis of Maryland Soils Formed from Serpentinite 1. Soil Sci. Soc. Am. J. 46: 607-616. Radu, T. and D. Diamond. 2009. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. J. Hazard. Mater. 171: 1168-1171. Rouillon, M. and M. P. Taylor. 2016. Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research? Environ. Pollut. 214: 255-264. Ryan, J. G., J. W. Shervais, Y. Li, M. K. Reagan, H. Y. Li, D. Heaton, M. Godard, M. Kirchenbaur, S. A. Whattam, J. A. Pearce, T. Chapman, W. Nelson, J. Prytulak, K. Shimizu and K. Petronotis. 2017. Application of a handheld X-ray fluorescence spectrometer for real-time, high-density quantitative analysis of drilled igneous rocks and sediments during IODP Expedition 352. Chem. Geol. 451: 55-66. Sack, R. O. and M. S. Ghiorso. 1991. Chromian spinels as petrogenetic indicators; thermodynamics and petrological applications. Am. Mineral. 76: 827-847. Sacristán, D., R. A. Viscarra Rossel and L. Recatalá. 2016. Proximal sensing of Cu in soil and lettuce using portable X-ray fluorescence spectrometry. Geoderma 265: 6-11. Shanker, A. K., C. Cervantes, H. Loza-Tavera and S. Avudainayagam. 2005. Chromium toxicity in plants. Environ. Int. 31: 739-753. Sharma, A., D. C. Weindorf, T. Man, A. A. A. Aldabaa and S. Chakraborty. 2014. Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH). Geoderma 232: 141-147. Sharma, A., D. C. Weindorf, D. D. Wang and S. Chakraborty. 2015. Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC). Geoderma 239: 130-134. Steiner, A. E., R. M. Conrey and J. A. Wolff. 2017. PXRF calibrations for volcanic rocks and the application of in-field analysis to the geosciences. Chem. Geol. 453: 35-54. Stosnach, H. 2006. On-site analysis of heavy metal contaminated areas by means of total reflection X-ray fluorescence analysis (TXRF). Spectrochimica Acta Part B: Atom. Spectrosc. 61: 1141-1145. Swanhart, S., D. C. Weindorf, S. Chakraborty, N. Bakr, Y. D. Zhu, C. Nelson, K. Shook and A. Acree. 2014. Soil Salinity Measurement Via Portable X-ray Fluorescence Spectrometry. Soil Sci. 179: 417-423. Tan, L. and H. Chuay. 1979. Serpentinites of the Fengtien-Wanyung area, Hualien, Taiwan. Acta Geologica Taiwan: 52-68. Weindorf, D. C., N. Bakr and Y. D. Zhu. 2014. Advances in Portable X-ray Fluorescence (PXRF) for Environmental, Pedological, and Agronomic Applications. Adv. Agron. 128: 1-45. Weindorf, D. C., Y. Zhu, B. Haggard, J. Lofton, S. Chakraborty, N. Bakr, W. Zhang, W. C. Weindorf and M. Legoria. 2012. Enhanced Pedon Horizonation Using Portable X-ray Fluorescence Spectrometry. Soil Sci. Soc. Am. J. 76: 522. Weindorf, D. C., Y. D. Zhu, R. Ferrell, N. Rolong, T. Barnett, B. L. Allen, J. Herrero and W. Hudnall. 2009. Evaluation of Portable X-ray Fluorescence for Gypsum Quantification in Soils. Soil Sci. 174: 556-562. Wildman, W., M. Jackson and L. Whittig. 1968. Iron-Rich Montmorillonite Formation in Soils Derived from Serpentinite 1. Soil Sci. Soc. Am. J. 32: 787-794. Yusuf, M., Q. Fariduddin, S. Hayat and A. Ahmad. 2011. Nickel: an overview of uptake, essentiality and toxicity in plants. Bull. Environ. Contam. Toxicol. 86: 1-17. Zhu, Y. D., D. C. Weindorf and W. T. Zhang. 2011. Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture. Geoderma 167-68: 167-177. Zschornack, G. H. 2007. Handbook of X-ray Data. Springer Science & Business Media.
|