|
[1] Z. Chu, P. M. Sarro, and S. Middelhoek, "Silicon three-axial tactile sensor," Sensors and Actuators A: Physical, vol. 54, pp. 505-510, 1996. [2] W. H. Ko and Q. Wang, "Touch mode capacitive pressure sensors," Sensors and Actuators A: Physical, vol. 75, pp. 242-251, 1999. [3] B. J. Kane, M. R. Cutkosky, and G. T. A. Kovacs, "A traction stress sensor array for use in high-resolution robotic tactile imaging," Journal of Microelectromechanical Systems, vol. 9, pp. 425-434, 2000. [4] M. Ádám, T. Mohácsy, P. Jónás, C. Dücső, É. Vázsonyi, and I. Bársony, "CMOS integrated tactile sensor array by porous Si bulk micromachining," Sensors and Actuators A: Physical, vol. 142, pp. 192-195, 2008. [5] H. K. Lee, S. I. Chang, and E. Yoon, "A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment," Journal of Microelectromechanical Systems, vol. 15, pp. 1681-1686, 2006. [6] W. Y. Chang, T. H. Fang, H. J. Lin, Y. T. shen, and Y. C. Lin, "A Large Area Flexible Array Sensors Using Screen Printing Technology," Journal of Display Technology, vol. 5, pp. 178-183, 2009. [7] S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, et al., "A wearable and highly sensitive pressure sensor with ultrathin gold nanowires," Nat Commun, vol. 5, 2014. [8] M. Ha, S. Lim, J. Park, D. S. Um, Y. Lee, and H. Ko, "Bioinspired Interlocked and Hierarchical Design of ZnO Nanowire Arrays for Static and Dynamic Pressure-Sensitive Electronic Skins," Advanced Functional Materials, vol. 25, pp. 2841-2849, 2015. [9] 王詠辰, "可檢測正向力和剪力之透明軟性觸覺感測器系統," 國 立清華大學動力機械工程學系碩士論文, 民國一百零五年七月. [10] C. Pang, G. Y. Lee, T. Kim, S. M. Kim, H. N. Kim, S. H. Ahn, et al., "A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres," Nature Materials, vol. 11, pp. 795-801, 2012. [11] J. Park, Y. Lee, J. Hong, Y. Lee, M. Ha, Y. Jung, et al., "Tactile-Direction-Sensitive and Stretchable Electronic Skins Based on Human-Skin-Inspired Interlocked Microstructures," ACS Nano, vol. 8, pp. 12020-12029, 2014. [12] Y. Jung, D. G. Lee, J. Park, H. Ko, and H. Lim, "Piezoresistive Tactile Sensor Discriminating Multidirectional Forces," Sensors, vol. 15, pp. 25463-25473, 2015. [13] Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, et al., "An integrated flexible temperature and tactile sensing array using PI-copper films," Sensors and Actuators A: Physical, vol. 143, pp. 143-153, 2008. [14] J. S. Lee, K. Y. Shin, O. J. Cheong, J. H. Kim, and J. Jang, "Highly Sensitive and Multifunctional Tactile Sensor Using Free-standing ZnO/PVDF Thin Film with Graphene Electrodes for Pressure and Temperature Monitoring," Scientific Reports, vol. 5, pp. 7887, 2015. [15] Z. Fu, B. Lin, and J. Zu, "Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition," Thin Solid Films, vol. 402, pp. 302-306, 2002. [16] J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, et al., "The growth and annealing of single crystalline ZnO films by low-pressure MOCVD," Journal of Crystal Growth, vol. 243, pp. 151-156, 2002. [17] K. H. Yoon and J. Y. Cho, "Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique," Materials Research Bulletin, vol. 35, pp. 39-46, 2000. [18] Y. G. Wang, S. P. Lau, X. H. Zhang, H. W. Lee, S. F. Yu, B. K. Tay, et al., "Evolution of visible luminescence in ZnO by thermal oxidation of zinc films," Chemical Physics Letters, vol. 375, pp. 113-118, 2003. [19] W. Water and S. Y. Chu, "Physical and structural properties of ZnO sputtered films," Materials Letters, vol. 55, pp. 67-72, 2002. [20] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka, and G. Shimaoka, "Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation," Applied Surface Science, vol. 142, pp. 233-236, 1999. [21] L. Duan, X. Zhao, Y. Zhang, H. Shen, and R. Liu, "Fabrication of flexible Al-doped ZnO films via sol–gel method," Materials Letters, vol. 162, pp. 199-202, 2016. [22] N. H. Alvi, W. u. Hassan, B. Farooq, O. Nur, and M. Willander, "Influence of different growth environments on the luminescence properties of ZnO nanorods grown by the vapor–liquid–solid (VLS) method," Materials Letters, vol. 106, pp. 158-163, 2013. [23] Y. C. Yoon, K. S. Park, and S. D. Kim, "Effects of low preheating temperature for ZnO seed layer deposited by sol–gel spin coating on the structural properties of hydrothermal ZnO nanorods," Thin Solid Films, vol. 597, pp. 125-130, 2015. [24] L. Vayssieres, "Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions," Advanced Materials, vol. 15, pp. 464-466, 2003. [25] S. N. Das, J. P. Kar, J. H. Choi, T. I. Lee, K. J. Moon, and J. M. Myoung, "Fabrication and Characterization of ZnO Single Nanowire-Based Hydrogen Sensor," The Journal of Physical Chemistry C, vol. 114, pp. 1689-1693, 2010. [26] S. Stassi, G. Canavese, F. Cosiansi, R. Gazia, and M. Cocuzza, "A Tactile Sensor Device Exploiting the Tunable Sensitivity of Copper-PDMS Piezoresistive Composite," Procedia Engineering, vol. 47, pp. 659-663, 2012. [27] N. Thanh-Vinh, N. Binh-Khiem, H. Takahashi, K. Matsumoto, and I. Shimoyama, "High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers," Sensors and Actuators A: Physical, vol. 215, pp. 167-175, 2014. [28] H. B. Muhammad, C. Recchiuto, C. M. Oddo, L. Beccai, C. J. Anthony, M. J. Adams, et al., "A capacitive tactile sensor array for surface texture discrimination," Microelectronic Engineering, vol. 88, pp. 1811-1813, 2011. [29] M. I. Tiwana, A. Shashank, S. J. Redmond, and N. H. Lovell, "Characterization of a capacitive tactile shear sensor for application in robotic and upper limb prostheses," Sensors and Actuators A: Physical, vol. 165, pp. 164-172, 2011. [30] L. Seminara, M. Capurro, P. Cirillo, G. Cannata, and M. Valle, "Electromechanical characterization of piezoelectric PVDF polymer films for tactile sensors in robotics applications," Sensors and Actuators A: Physical, vol. 169, pp. 49-58, 2011. [31] M. S. Kim, H. R. Ahn, S. Lee, C. Kim, and Y. J. Kim, "A dome-shaped piezoelectric tactile sensor arrays fabricated by an air inflation technique," Sensors and Actuators A: Physical, vol. 212, pp. 151-158, 2014. [32] Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, et al., "Human Skin Based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as Self-Powered Active Tactile Sensor System," ACS Nano, vol. 7, pp. 9213-9222, 2013. [33] H. Kotani, M. Takasaki, T. Mizuno, and T. Nara, "Integration of Tactile Information and Visual Information Using A Glass Substrate Surface Acoustic Wave Tactile Display," SICE-ICASE, 2006. International Joint Conference, pp. 5411-5414, 2006. [34] Z. L.Wang, "Nanogenerators for self-powered devices and systems," 2011. [35] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Superlattices and Microstructures, vol. 34, pp. 3-32, 2003. [36] M. Chen, Z. L. Pei, X. Wang, C. Sun, and L. S. Wen, "Structural, electrical, and optical properties of transparent conductive oxide ZnO:Al films prepared by dc magnetron reactive sputtering," Journal of Vacuum Science & Technology A, vol. 19, pp. 963-970, 2001. [37] J. Kobmann and C. Hattig, "Investigation of interstitial hydrogen and related defects in ZnO," Physical Chemistry Chemical Physics, vol. 14, pp. 16392-16399, 2012. [38] J. F. Shackelford, Introduction to Materials Science for Engineers, 8th edition, Pearson, 2015 . [39] R. Srivastava, "Investigation on Temperature Sensing of Nanostructured Zinc Oxide Synthesized via Oxalate Route," Journal of Sensor Technology, vol. 02, pp. 8-12, 2012. [40] H. Wang, J. Xie, K. Yan, and M. Duan, "Growth Mechanism of Different Morphologies of ZnO Crystals Prepared by Hydrothermal Method," Journal of Materials Science & Technology, vol. 27, pp. 153-158, 2011. [41] W. Y. Chang, T. H. Fang, and J. H. Tsai, "Electromechanical and Photoluminescence Properties of Al-doped ZnO Nanorods Applied in Piezoelectric Nanogenerators," Journal of Low Temperature Physics, vol. 178, pp. 174-187, 2014. [42] S. H. Yi, S. K. Choi, J. M. Jang, J. A. Kim, and W. G. Jung, "Patterned Growth of a Vertically Aligned Zinc Oxide Rod Array on a Gallium Nitride Epitaxial Layer by Using a Hydrothermal Process," Korean Physical Society, vol. 53, pp. 227-231, 2008.
[43] C. T. Pan, Y. C. Chen, C. C. Hsieh, C. H. Lin, C. Y. Su, C. K. Yen, et al., "Ultrasonic sensing device with ZnO piezoelectric nanorods by selectively electrospraying method," Sensors and Actuators A: Physical, vol. 216, pp. 318-327, 2014.
|