跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 12:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳志揚
研究生(外文):Chih-Yang Chen
論文名稱:裂隙岩體代表性單元水力特性參數的尺度效應及其對地下水流模擬的影響
論文名稱(外文):Scale Effect of Representative Elementary Volume and Related Hydraulic Parameters for Fractured Rock Mass and Associated Influence on Results of Groundwater Flow Simulation
指導教授:王泰典
指導教授(外文):Tai-Tien Wang
口試委員:王泰典邱雅筑陳正勳林銘郎黃燦輝
口試委員(外文):Tai-Tien WangYa-Chu ChiuCheng-Hsun ChenMing-Lang LinTsan-Hwei Huang
口試日期:2017-06-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:147
中文關鍵詞:地下水模擬系統水力傳導係數張量代表性單元體積統計檢定裂隙岩體
外文關鍵詞:Groundwater modeling systemHydraulic conductivity tensorRepresentative elementary volumeStatistical testsFractured rock mass
相關次數:
  • 被引用被引用:1
  • 點閱點閱:456
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
近年來因環境資源、大型工程建設等議題,水文地質相關學術領域及其研究,開始被正視且迅速發展中。岩盤工程中如大型地下實驗室建置、隧道開挖與水文地質試驗井場等,均須對水文地質與水力特性參數具一定程度的了解,以利於後續規劃與相關施工。然而,自然岩體中不連續面複雜其中,使其地下水滲流特性具有異質、異向性,亦提高水力特性參數及其岩體水力傳導係數的變異程度,造成場址水文地質狀況不易掌握。因此,場址之水文地質調查與特徵化相關水力特性參數,係為分析區域地下水環境資源的要點,其中定義場址完整的水文地質代表性體積單元為關鍵項目之一。如何定義岩盤工程與其所在位置之水文地質單元與單元尺寸,實為水文地質參數量化評估的重要課題。
本研究利用前期研究成果,以裂隙岩體水力特性參數特徵化模式,提出一套水力特性參數代表性單元體積的評估程序,透過現地水力特性參數的調查以及統計檢定,估算場址代表性單元體積與其岩體水力傳導係數的變異程度,進而決定場址各水力特性參數的影響尺寸,其方法論的建立與延伸應用係透過南投和社水文試驗井場與另一倡議中之隧道案例工程。水力特性參數的代表性單元體積評估方式,透過不同尺度的調查模式獲得具尺度變異之各項水力特性參數,再藉由統計誤差傳播理論描述水力特性參數與水力傳導係數間的變異程度,討論不同水力傳導係數經驗公式探求結果的變異幅度,以完整描繪出場址水力傳導係數於不同尺度下的變動;為了解水力傳導係數的特性與代表性單元體積的關聯在實際情況下的變化,本研究採用地下水模擬系統(Groundwater Modeling System, GMS)進行數值模式建立與分析,首先以單一元素模擬異向性變化,藉由數值解與解析解計算兩者間誤差,繼而轉換尺度至模擬和社井場現地抽水試驗,進行參數敏感度分析,了解代表性單元體積及其相關參數因尺度變異而產生的影響,以完成雙向度數值模擬的方法論平行驗證,並確立模式的準確度與正確性。案例研究則透過更大尺度的場址調查與數值模式的建立,針對一倡議中之隧道工程進行方法論的延伸應用,探討不同代表性單元體積造成對於隧道開挖引致滲流量模擬結果的變化。
研究成果顯示,代表性單元體積評估程序藉由統計誤差傳播累積理論,可有效描述出水力特性參數與水力傳導係數隨著尺度變異的變化,藉由數值模擬對地下水異向性驗證,及其相關的參數敏感度分析,可得知數值解與解析解在邊界條件的設置會產生一定範圍的誤差,誤差量值的確定可提供數值模式修改,以提升後續研究之精確度及正確性;而不同尺度之水力特性參數代表性單元體積,對於隧道開挖引致之地下水滲流變化,透過三維地下水模擬結果得知具一定程度的影響。研究中的方法論建立、驗證與延伸應用等結果,可提供水文地質特性研究自概念模式、敘述模式、水力學模式與數值模式等不同階段的技術參考。
In recent years, the large-scale construction projects and environmental resources related issues had brought attentions and rapid development on hydrogeology and other academic field connected to it. Rock engineering, including large-scale underground laboratory, tunnel excavation and hydrogeological well site, requires a certain degree of understanding on hydrogeology and hydraulic parameters, in order to facilitate subsequent planning and related construction. However, the presence of discontinuities in rock mass generates heterogeneity and anisotropy in its engineering characteristics, increasing variation of hydraulic and conductivity parameters, resulting in difficulty for determining representative parameters. Investigation and characterization of hydrogeological parameters of fracture rock masses are crucial to underground water exploiting. Among which, defining the hydrogeological representative elementary volume of the site is one of the key items. How to evaluate the hydrogeological unit to the scale of the target rock engineering is an important issue in hydrogeological parameters characterization.
Based on previous research results, this thesis present an assessment process for representative elementary volume on hydraulic parameter characterization on account of a hydraulic parameter characterization model for fractured rock mass. Investigation and statistical test are applied to estimate the variation degrees of representative elementary volume in site and associated hydraulic conductivity in rock mass, which further determine the scale influence on each hydraulic characteristic parameters, the methodology of the establishment and extension of application is through by Heshe hydrogeological well site, and another tunnel case project in initiative in north Taiwan. The evaluation method of representative elementary volume in hydraulic characteristic establish by statistical error propagation theory to calculate the varying degrees between the characteristic parameters and hydraulic conductivity, and the empirical formula of different hydraulic conductivity is discussed to find the variation range and plotted out different scales in a result. In order to understand the behavior of hydraulic conductivity associated with representative elementary volume changes, this research applies groundwater modeling system to establish numerical model and analysis it. Firstly, the anisotropy is simulated with a single element, the error between the two elements is calculated by numerical solution and analytic solution. Then, convert the goal of simulation scale to in-situ cross-hole pumping test which in heshe well site. Secondly, parameter sensitivity analysis is carried out to understand the representative elementary volume and its related parameters. Scale variation is using for complete numerical simulation methodology parallel verification, and establish the accuracy and correctness of the model. The case study is aimed at extending the application of different representative elementary volumes on the volume of seepage flow caused by tunnel excavation, which extend the application of methodologies in a large number of site surveys and numerical models.
The results show that the representative elementary volume evaluation program can effectively describe the change of the hydraulic characteristic parameters and the hydraulic conductivity coefficient with the scale variation by the statistical error propagation accumulation theory, and verify the groundwater anisotropy by numerical simulation. The related parameter sensitivity analysis shows that the numerical solution and the analytical solution will produce a certain range of errors in the setting of the boundary condition. The determination of the error value can provide the numerical model to improve the accuracy and correctness of the subsequent research. The hydraulic characteristic parameters of representative elementary volumes are on different scales, which changed in the groundwater seepage caused by tunneling, that with a certain degree of influence of groundwater through the three-dimensional simulation. We provide a valuable technical reference from the conceptual model, narrative model, and hydraulics model all the way to numerical model, through the outcome of methodology in designing verification and applying in this study.
目錄

摘要 II
英文摘要 IV
致謝 VII
表目錄 X
圖目錄 XII
第一章 緒論 1
1.1研究動機與目的 1
1.2研究方法與流程 3
1.3研究架構與主要內容 4
第二章 文獻回顧 6
2.1水文地質調查案例回顧 6
2.2水文地質模式及地下水模擬分析 8
2.2.1水文地質模式 9
2.2.2地下水分析方法 13
2.3水文地質代表性單元體積及其特性參數的影響 14
2.3.1水文地質特性與參數描述 14
2.3.2水文地質代表性單元體積概念 19
2.3.3等值水力傳導係數滲透張量量值推估方法 20
第三章 研究方法 41
3.1代表性單元尺寸及其水力特性參數評估程序 42
3.1.1不連續面空間分佈及幾何特性參數之機率分佈 42
3.1.2不同尺度岩體水力傳導係數的機率分佈 43
3.1.3 代表性單元體積及水力特性參數驗證程序 46
3.2應用性驗證 47
3.2.1和社井場簡介 47
3.2.2代表性單元尺度 49
3.2.3水力傳導係數異向性影響 50
第四章 案例研究分析 66
4.1研究範圍及案例水文地質分區 66
4.1.1研究案例 66
4.1.2調查位置選定 67
4.2現地調查及成果 67
4.2.1調查點A-木山層 67
4.2.2調查點B-粗窟層 68
4.2.3調查點C-大桶山層 69
4.2.4調查點D-四稜砂岩層 69
4.2.5調查點E-乾溝層 70
4.2.6 UAV攝影測量與三維影像整合結果 71
4.3水文地質代表性單元體積及參數統計檢定結果 73
4.3.1研究區域參數統計檢定及其機率分佈 73
4.3.2不同尺度岩體水力傳導係數推估 76
4.3.3代表性單元體積評估 77
4.4數值模式建立與修正 78
4.4.1水文地質概念模型建立 78
4.4.2邊界條件設定 79
4.4.3初始條件設定 79
4.4.4水文地質參數選定 80
4.5模擬結果與討論 80
4.5.1三維異向地下水數值模擬結果 80
4.5.2代表性單元體積匹配與異向穩態數值模擬結果探討 81
第五章 結論與建議 126
5.1結論 126
5.2建議 128
參考文獻 129
附錄 138
1.Barenblatt, G. I., Zheltov, I. P., & Kochina, I. N. (1960). Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. Journal of applied mathematics and mechanics, 24(5), 1286-1303.
2.Barton, N. 1973. A review of the shear strength of filled discontinuities in rock. Fjellspregningsteknikk, Bergmekanikk, Oslo, Tapir Press, Trondheim, pp. 19.1 19.38, Also NGI Publ. 105, 1974.
3.Baecher, G. B., Lanney, N. A., & Einstein, H. H. (1977, January). Statistical description of rock properties and sampling. In The 18th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association.
4.Barton, N. 1976. The shear strength of rock and rock joints. Int. Jour. Rock Mech. Min. Sci. and Geomech. Abstr., Vol. 13, No. 9: 255-279. Also NGI Publ. 119, 1978
5.Barton, N. & Choubey, V. 1977. The shear strength of rock joints in theory and practice. Rock Mechanics 1/2:1-54. Vienna: Springer. Also NGI Publ. 119, 1978
6.Bear J (1979) Hydraulics of Groundwater. McGraw-Hill Int. Book Co., New York, p. 567..
7.Bandis, S. C., Lumsden, A. C., & Barton, N. R. (1983, December). Fundamentals of rock joint deformation. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 20, No. 6, pp. 249-268). Pergamon.
8.Bandis S.C., Barton N.R., Christiansen M (1985) Application of joint behavior to rock mechanics problems. Proc Int. Symp. on Fundamentals of Rock Joints, Bjorkliden.
9.Brown, S. R., & Scholz, C. H. (1985). Broad bandwidth study of the topography of natural rock surfaces. J. geophys. Res, 90(B14), 12575-12582.
10.Cruden, D. M. (1977) Describing the size of discontinuities. International journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 14, 133-37
11.Chijimatsu, M., Fujita, T., Sugita, Y., Amemiya, K., & Kobayashi, A. (2001). Field experiment, results and THM behavior in the Kamaishi mine experiment. International Journal of Rock Mechanics and Mining Sciences, 38(1), 67-78.
12.Chen, C.Y., Zhan, S.S. and Wang, T.T. (2017, May) “In-situ hydrogeological investigation and associated numerical modeling: An example of Heshe well site” Young Scholars’ Symposium on Rock Mechanics (YSRM 2017),p.57-62
13.Darcy, H. (1856). Les fontaines publique de la ville de Dijon. Dalmont, Paris, 647.
14.Detwiler, R. L., Pringle, S. E., & Glass, R. J. (1999). Measurement of fracture aperture fields using transmitted light: An evaluation of measurement errors and their influence on simulations of flow and transport through a single fracture. Water resources research, 35(9), 2605-2617.
15.Hatheway, A. W. (2009). The complete ISRM suggested methods for rock characterization, testing and monitoring; 1974–2006. Environmental & Engineering Geoscience, 15(1), 47-48.
16.Long, J. C. S., Remer, J. S., Wilson, C. R., & Witherspoon, P. A. (1982). Porous media equivalents for networks of discontinuous fractures. Water Resources Research, 18(3), 645-658.
17.Lee, C. H., Deng, B. W., & Chang, J. L. (1995). A continuum approach for estimating permeability in naturally fractured rocks. Engineering Geology, 39(1-2), 71-85.
18.Mason, R. L., Gunst, R. F., & Hess, J. L. (2003). Statistical design and analysis of experiments: with applications to engineering and science
19.Masset, O., & Loew, S. (2010). Hydraulic conductivity distribution in crystalline rocks, derived from inflows to tunnels and galleries in the Central Alps, Switzerland. Hydrogeology Journal, 18(4), 863-891.
20.Neuzil, C. E., & Tracy, J. V. (1981). Flow through fractures. Water Resources Research, 17(1), 191-199.
21.Nguyen, T. S., Borgesson, L., Chijimatsu, M., Rutqvist, J., Fujita, T., Hernelind, J., ... & Jing, L. (2001). Hydro-mechanical response of a fractured granitic rock mass to excavation of a test pit—the Kamaishi Mine experiment in Japan. International Journal of Rock Mechanics and Mining Sciences, 38(1), 79-94.
22.Oda, M. A. S. A. N. O. B. U. (1985). Permeability tensor for discontinuous rock masses. Geotechnique, 35(4), 483-495.
23.Olsson, R., & Barton, N. (2001). An improved model for hydromechanical coupling during shearing of rock joints. International Journal of Rock Mechanics and Mining Sciences, 38(3), 317-329.
24.Snow, D. T. (1969). Anisotropie permeability of fractured media. Water Resources Research, 5(6), 1273-1289.
25.Schwartz, F. W., Smith, L., & Crowe, A. S. (1983). A stochastic analysis of macroscopic dispersion in fractured media. Water Resources Research, 19(5), 1253-1265.
26.Smith, L., & Schwartz, F. W. (1984). An analysis of the influence of fracture geometry on mass transport in fractured media. Water Resources Research, 20(9), 1241-1252.
27.Singhal, B. B. S., & Gupta, R. P. (2010). Applied hydrogeology of fractured rocks.
28.Terzaghi, R. D. (1965). Sources of error in joint surveys. Geotechnique, 15(3), 287-304.
29.Tse, R., & Cruden, D. M. (1979, October). Estimating joint roughness coefficients. In International journal of rock mechanics and mining sciences & geomechanics abstracts (Vol. 16, No. 5, pp. 303-307). Pergamon.
30.Warren, J. E., & Root, P. J. (1963). The behavior of naturally fractured reservoirs. Society of Petroleum Engineers Journal, 3(03), 245-255.
31.Witherspoon, P. A., Wang, J. S., Iwai, K., & Gale, J. E. (1980). Validity of cubic law for fluid flow in a deformable rock fracture. Water resources research, 16(6), 1016-1024.
32.Wei, Z. Q., Egger, P., & Descoeudres, F. (1995, April). Permeability predictions for jointed rock masses. In International journal of rock mechanics and mining sciences & geomechanics abstracts (Vol. 32, No. 3, pp. 251-261). Pergamon.
33.Wang, T. T., Zhan, S. S., & Huang, T. H. (2015). Determining transmissivity of fracture sets with statistical significance using single-borehole hydraulic tests: Methodology and implementation at Heshe well site in central Taiwan. Engineering Geology, 198, 1-15.
34.Wang, T. T., Zhan, S. S., Chen, C. H., & Su, W. C. (2017). Characterizing fractures to mitigate inrush of water into a shaft using hydrogeological approaches. Tunnelling and Underground Space Technology, 61, 205-220.
35.Zhang, L., & Einstein, H. H. (1998). Estimating the mean trace length of rock discontinuities. Rock Mechanics and Rock Engineering, 31(4), 217-235.
36.Zhan, S. S., Wang, T. T., & Huang, T. H. (2016). Variations of hydraulic conductivity of fracture sets and fractured rock mass with test scale: Case study at Heshe well site in Central Taiwan. Engineering Geology, 206, 94-106.
37.林碧山,「破裂岩體地下水滲流與溶質傳輸」,博士論文,國立成功大學資源工程學系,臺南(2000)
38.交通部台灣區國道新建工程局(2006),「北宜高速公路興建專輯(南港頭城)-III隧道工程」。
39.江誌偉(2008),裂隙岩體滲流離散模式之研究,臺灣大學土木工程學研究所學位論文,p.1-147。
40.王泰典、詹尚書、宋政輝、黃燦輝、賈儀平、劉振宇、鄧茂華(2011):和社場址水文地質現地試驗案例探討,2011山區水文地質與地下水資源調查技術研討會論文集,9月7日,台北,K01-K45。
41.鄭佳邦、李魁士、謝文誠、許志宇、王豐仁 (2015),「隧道對水庫之影響與保護-以北宜直鐵為例」,地工技術,第146期,第43-52頁。
42.陳志揚、詹尚書、王泰典,「裂隙岩體水文地質井場現地試驗及數 值模擬案例比較」,2016,岩盤工程研討會論文集,高雄,第 368-377頁,2016。
43.張有天(2005),“岩石水力學與工程”,中國水利水電出版社,中國。
44.湯振輝,楊健一(1976),「台灣雪山山脈東北端地質圖-台灣雪山嶺東北端新、古第三系間地層缺失」。
45.詹尚書(2017),裂隙岩體跨尺度水力參數調查程序之建立及其工程應用之探討(未定),台北科技大學材料及資源工程研究所博士論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top