中國科學院植物研究所(1979)。中國植物志。科學出版社。第21卷19頁。
陳明德(2000)。第四型葡萄糖輸送器。台灣醫學, 4(4), 431-433。
林傳旺(2011)。紅麴發酵酒粕產物之抗氧化效果及抑制糖尿病腎病變之評估。(碩士), 大仁科技大學, 屏東縣。邱宜昕(2007)。胰島素對基因缺陷及高脂飼料餵食小鼠Akt活性之影響。(碩士), 國立中興大學, 台中市。郭桂伶(2007)。葡萄糖轉運蛋白-1(GLUT1)中分子運輸途徑的預測研究。(碩士), 國立臺灣大學, 台北市。曾千容(2005)。台灣栽培數種山藥之降血糖活性研究。(碩士), 高雄醫學大學, 高雄市。葉青華(2005)。TPA誘發之人類子宮頸癌上皮SiHa細胞的分化與凋亡。(碩士), 國防醫學院, 台北市。蔡幸儒(2016)。金銀花水萃取物抗發炎作用及促進人類大腸癌HT-29細胞凋亡之研究。(碩士), 大仁科技大學, 屏東縣。蔡儒安(2019)。牛蒡複方調節老鼠血糖之研究。(碩士), 大仁科技大學, 屏東縣。賴慶紓(2010)。多甲氧基類黃酮之癌症化學預防功效: 抑制發炎反應與腫瘤形成。成功大學環境醫學研究所學位論文, 1-182。
American Diabetes Association. (2004). Gestational diabetes mellitus. Diabetes care, 27(suppl 1), s88-s90.
Basak, S., Kim, H., Kearns, J. D., Tergaonkar, V., O'Dea, E., Werner, S. L., ... & Hoffmann, A. (2007). A fourth IκB protein within the NF-κB signaling module. Cell, 128(2), 369-381.
Benson, T. W., Weintraub, D. S., Crowe, M., Yiew, N. K., Popoola, O., Pillai, A., ... & Mintz, J. (2018). Deletion of the Duffy antigen receptor for chemokines (DARC) promotes insulin resistance and adipose tissue inflammation during high fat feeding. Molecular and cellular endocrinology, 473, 79-88.
Boles, A., Kandimalla, R., & Reddy, P. H. (2017). Dynamics of diabetes and obesity: epidemiological perspective. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863(5), 1026-1036.
Brasier, A. R. (2006). The NF-κB regulatory network. Cardiovascular toxicology, 6(2), 111-130.
Chen, L., Chen, R., Wang, H., & Liang, F. (2015). (Review Article) Mechanisms linking inflammation to insulin resistance. International journal of endocrinology, 2015, 1-9.
Cho, H. (2013). Protein tyrosine phosphatase 1B (PTP1B) and obesity. In Vitamins & Hormone, 91, 405-424.
Copps, K. D., & White, M. F. (2012). Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 55(10), 2565-2582.
Deng, B., Li, Y., Xu, D., Ye, Q., & Liu, G. (2019). Nitrogen availability alters flavonoid accumulation in Cyclocarya paliurus via the effects on the internal carbon/nitrogen balance. Scientific reports, 9(1), 2370.
Deng, L., Lei, J., He, J., Liu, J., Wang, L., Zhang, R. & Liu, Y. (2014). (Research Article) Evaluation on genotoxicity and teratogenicity of aqueous extract from Cyclocarya paliurus leaves. The Scientific World Journal, 2014, 1-12.
Fougerat, A., Pan, X., Smutova, V., Heveker, N., Cairo, C. W., Issad, T., ... & Pshezhetsky, A. V. (2018). Neuraminidase 1 activates insulin receptor and reverses insulin resistance in obese mice. Molecular metabolism, 12, 76-88.
Garofalo, R. S., Orena, S. J., Rafidi, K., Torchia, A. J., Stock, J. L., Hildebrandt, A. L. & McNeish, J. D. (2003). Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKBβ. The Journal of clinical investigation, 112(2), 197-208.
Gilmore, T. D. (2006). Introduction to NF-κB: players, pathways, perspectives. Oncogene, 25(51), 6680.
Huang, M. Q., Shangguan, X. C., Xu, M. S., Wang, W. J., Shen, Y. G., Jiang, Y. & Chen, T. T. (2011). Studies on hypolipemic effect of Cyclocarya paliurus (Batal) Iljinskaja polysaccharide. Acta Agric. Univ. Jiangxiensis, 33, 157-161.
Hvid, H., Teige, I., Kvist, P. H., Svensson, L., & Kemp, K. (2008). TPA induction leads to a Th17-like response in transgenic K14/VEGF mice: a novel in vivo screening model of psoriasis. International immunology, 20(8), 1097-1106.
Kurihara, H., Fukami, H., Kusumoto, A., Toyoda, Y., Shibata, H., Matsui, Y. & Tanaka, T. (2003). Hypoglycemic action of Cyclocarya paliurus (Batal.) Iljinskaja in normal and diabetic mice. Bioscience, biotechnology, and biochemistry, 67(4), 877-880.
Li, C., & Zhang, B. B. (2007). Insulin signaling and action: glucose, lipids, protein. In Endotext [Internet]: MDText. com, Inc.
Li, J., Luo, M., Hu, M., Guo, A. Y., Yang, X., Zhang, Q., & Zhu, Y. (2018). Investigating the molecular mechanism of aqueous extract of Cyclocarya paliurus on ameliorating diabetes by transcriptome profiling. Frontiers in Pharmacology, 9, 912.
Li, J., Zhang, Q., Zeng, W., Wu, Y., Luo, M., Zhu, Y. & Yang, X. (2018). Integrating Transcriptome and Experiments Reveals the Anti-diabetic Mechanism of Cyclocarya paliurus Formula. Molecular Therapy-Nucleic Acids, 13, 419-430.
Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduction And Targeted Therapy, 2, 17023.
Liu, Y., Chen, P., Zhou, M., Wang, T., Fang, S., Shang, X., & Fu, X. (2018). Geographic Variation in the Chemical Composition and Antioxidant Properties of Phenolic Compounds from Cyclocarya paliurus (Batal) Iljinskaja Leaves. Molecules (Basel, Switzerland), 23(10), 2440.
Lu, M. X., Yang, Y., Zou, Q. P., Luo, J., Zhang, B. B., Liu, X. Q., & Hwang, E. H. (2018). Anti-diabetic effects of Acankoreagenin from the leaves of Acanthopanax gracilistylus herb in RIN-m5F cells via suppression of NF-κB activation. Molecules, 23(4), 958.
Majithia, V., & Geraci, S. A. (2007). Rheumatoid arthritis: diagnosis and management. The American journal of medicine, 120(11), 936-939.
Miller, S. B. (2006, August). Prostaglandins in health and disease: an overview. In Seminars in arthritis and rheumatism, 36(1), 37-49.
Nagao, M., Asai, A., Sugihara, H., & Oikawa, S. (2015). Fat intake and the development of type 2 diabetes. Endocrine journal, 15-55.
Nieto-Vazquez, I., Fernández-Veledo, S., Krämer, D. K., Vila-Bedmar, R., Garcia-Guerra, L., & Lorenzo, M. (2008). Insulin resistance associated to obesity: the link TNF-alpha. Archives of physiology and biochemistry, 114(3), 183-194.
Ogawa, Y., & Calhoun, W. J. (2006). The role of leukotrienes in airway inflammation. Journal of Allergy and Clinical Immunology, 118(4), 789-798.
Oh, S., Ahn, H., Park, H., Lee, J. I., Park, K. Y., Hwang, D. & Byun, K. (2019). The attenuating effects of pyridoxamine on adipocyte hypertrophy and inflammation differ by adipocyte location. The Journal of Nutritional Biochemistry. Available online 24 April 2019.
Passos, G. F., Medeiros, R., Marcon, R., Nascimento, A. F., Calixto, J. B., & Pianowski, L. F. (2013). The role of PKC/ERK1/2 signaling in the anti-inflammatory effect of tetracyclic triterpene euphol on TPA-induced skin inflammation in mice. European journal of pharmacology, 698(3), 413-420.
Sacher, R. A., McPherson, R. A., Campos, J. M., & Widmann, F. K. (2000). Widmann's clinical interpretation of laboratory tests. FA Davis.
Shlomai, G., Neel, B., LeRoith, D., & Gallagher, E. J. (2016). Type 2 diabetes mellitus and cancer: the role of pharmacotherapy. Journal of Clinical Oncology, 34(35), 42-61.
Todd, J. C., Sanford, A. H., Davidsohn, I., & Henry, J. B. (1979). Clinical diagnosis and management by laboratory methods. Saunders.
Wang, H., Sun, X., Zhang, N., Ji, Z., Ma, Z., Fu, Q. & Ma, S. (2017). Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway. Physiology & behavior, 182, 93-100.
Wang, Q., Jiang, C., Fang, S., Wang, J., Ji, Y., Shang, X. & Zhang, J. (2013). Antihyperglycemic, antihyperlipidemic and antioxidant effects of ethanol and aqueous extracts of Cyclocarya paliurus leaves in type 2 diabetic rats. Journal of ethnopharmacology, 150(3), 1119-1127.
Wang, X., Li, W., & Kong, D. (2016). Cyclocarya paliurus extract alleviates diabetic nephropathy by inhibiting oxidative stress and aldose reductase. Renal failure, 38(5), 678-685.
Wang, Z., Xie, J., Yang, Y., Zhang, F., Wang, S., Wu, T. & Xie, M. (2017). Sulfated Cyclocarya paliurus polysaccharides markedly attenuates inflammation and oxidative damage in lipopolysaccharide-treated macrophage cells and mice. Scientific reports, 7, 40-42.
Wu, Z., Gao, T., Zhong, R., Lin, Z., Jiang, C., Ouyang, S. & Yin, Z. (2017). Antihyperlipidaemic effect of triterpenic acid-enriched fraction from Cyclocarya paliurus leaves in hyperlipidaemic rats. Pharmaceutical biology, 55(1), 712-721.
Xiao, H. T., Wen, B., Ning, Z. W., Zhai, L. X., Liao, C. H., Lin, C. Y. & Bian, Z. X. (2017). Cyclocarya paliurus tea leaves enhances pancreatic β cell preservation through inhibition of apoptosis. Scientific reports, 7(1), 1-13.
Xie, J. H., Dong, C. J., Nie, S. P., Li, F., Wang, Z. J., Shen, M. Y., & Xie, M. Y. (2015). Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food chemistry, 186, 97-105.
Xie, J., Wang, W., Dong, C., Huang, L., Wang, H., Li, C. & Xie, M. (2018). Protective effect of flavonoids from Cyclocarya paliurus leaves against carbon tetrachloride-induced acute liver injury in mice. Food and chemical toxicology, 119, 392-399.
Xu, G., Yoshitomi, H., Sun, W., Guo, X., Wu, L., Guo, X. & Gao, M. (2017). Cyclocarya paliurus (Batal.) Ijinskaja aqueous extract (CPAE) ameliorates obesity by improving insulin signaling in the hypothalamus of a metabolic syndrome rat model. Evidence-Based Complementary and Alternative Medicine, 2017, 1-9.
Yang, Z. W., Ouyang, K. H., Zhao, J., Chen, H., Xiong, L., & Wang, W. J. (2016). Structural characterization and hypolipidemic effect of Cyclocarya paliurus polysaccharide in rat. International journal of biological macromolecules, 91, 1073-1080.