跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 21:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳佑儒
研究生(外文):CHEN,YOU-JU
論文名稱:青錢柳葉萃取物降血糖及抗發炎之研究
論文名稱(外文):Study on the Hypoglycemic and Anti-inflammatory Effects of Cyclocarya paliurus Leaf-Extract
指導教授:謝登恩
指導教授(外文):SHIEN,DEN-EN
口試委員:施承典張美音
口試委員(外文):SHIH,CHENG-DEANCHANG,MEI-YIN
口試日期:2019-07-09
學位類別:碩士
校院名稱:大仁科技大學
系所名稱:藥學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:85
中文關鍵詞:青錢柳二型糖尿病發炎反應胰島素受體受質2蛋白激酶B 1/2/3葡萄糖轉運蛋白4蛋白酪氨酸磷酸酶1B
外文關鍵詞:Cyclocarya paliurusDiabetesInflammatory responseIRS2Akt1/2/3GLUT4PTP1B
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1879
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
糖尿病是一種代謝性疾病,其病徵是在於患者的血糖長期高於標準值。目前全世界至少有1.5億人罹患糖尿病,顯示出糖尿病已嚴重威脅國民的健康,而目前糖尿病患者中約90 %的患者屬於第二型的糖尿病。近年來已有研究顯示指出,二型糖尿病會因肥胖所產生的發炎因子,如:腫瘤壞死因子-α(TNF-α)、介白素-6(IL-6)、介白素-1β(IL-1β)…等,導致發炎反應,進而造成胰島素阻抗。在正常的胰島素訊號通路下,胰島素會與胰島素接受體接合,經磷酸化胰島素受體受質(IRS1/2/3)後,再往下游的脂醯醇3激酶(PI3K)及蛋白激酶B(Protein kinase B;PKB,又稱Akt)傳遞訊號,最終使葡萄糖轉運蛋白4(GLUT4)位移到細胞膜上,運送葡萄糖進入細胞內利用。而蛋白酪氨酸磷酸酶1B(PTP1B)是胰島素信號傳導途徑的負調節物,在胰島素阻抗的情況下,PTP1B會加劇高血糖的現象。常用來作為中醫臨床上的降血糖藥的青錢柳(Cyclocarya paliurus),其富含多種化學成分,除了可以降三高,亦被證實具有抗氧化壓力、抗發炎、保護肝臟及腎臟的功能。本研究主要探討青錢柳葉萃取物(C. paliurus Extract, CPE)針對調節血糖與發炎之功效進行機轉研究。首先由RIN-m5F細胞增生率試驗中發現:以CPE 50.0 μg/mL作用24小時後,可達到最佳的增生效果(71.0 %)。在小鼠調節血糖試驗中,經連續管餵各劑量之CPE 28天後,CPE中劑量組(200.0 mg/mL)可顯著提升總蛋白質(14.89 %)、降低空腹血糖值(65.48 %)、三酸甘油脂(28.30 %)及總膽固醇(31.32 %);增加IRS2(108.43 %)、Akt1/2/3(93.18 %)及GLUT4(140.22 %)的表現量,並與STZ組達到顯著性統計差異(p< 0.05)。另由小鼠抗發炎實驗中發現: CPE高劑量(25.0 mg/mL)組經12、24小時後,相較於TPA組,分別抑制了26.92 %及27.18 %,其抑制效果更優於陽性對照藥(Indomethacin)。在PTP1B抑制試驗中,隨著CPE劑量增加,PTP1B的含量也隨之減少,在CPE高劑量(5.0 mg/mL)下有最低濃度(0.001 ± 0.08 nmol),顯示CPE濃度越高抑制的效果越好。綜合上述實驗結果,CPE可藉由調節生化指標以及加強胰島素信號的傳遞,改善糖尿病鼠高血糖的現象,並藉由抗發炎反應減輕糖尿病鼠的胰島素阻抗,此外也可透過抑制PTP1B的作用,增強胰島素訊號的傳導。由此得知:CPE確實可藉由多方面的作用來調節血糖,而有益於糖尿病的恢復。
Diabetes is a metabolic disease. Diabetes is characterized by the blood sugar of the patient is over the standard value for a long time. At least 150 million people worldwide suffer from diabetes. This incident shows that diabetes has seriously threatened the health of the people. Currently, about 90% of patients with diabetes are classified as type 2 diabetes. In recent years, studies have shown that type 2 diabetes causes inflammatory factors such as TNF-α, IL-6 and IL-1β...etc, which produce an inflammatory response that in turn causes insulin resistance. In the normal insulin signaling pathway, insulin binds to the insulin receptor and phosphorylates IRS1/2/3, PI3K and Akt. Eventually, GLUT4 is displaced onto the cell membrane and glucose is transported into the cell for utilization. PTP1B is a negative regulator of the insulin signaling pathway. PTP1B exacerbates hyperglycemia in the case of insulin resistance. Cyclocarya paliurus is commonly used as a clinical hypoglycemic agent in traditional Chinese medicine. It is rich in a variety of chemical ingredients, which not only can lower the three highs, oxidative stress and inflammatory response. This study focused on the effects of Cyclocarya paliurus leaf-extract (CPE) on the regulation of blood sugar and inflammation. First of all discovered by the test of RINm5F cell proliferation, after addition CPE 50.0 μg/mLand 24 hours, the optimal proliferation effect (71.0%) was achieved. In the mouse of blood sugar regulation test, after continuous administration of CPE for 28 days, The CPE medium dose group (200.0 mg/mL) significantly increased Total-protein (14.99%), decreased Glucose AC (65.48%), Triglyceride (28.33%) and Total-cholesterol (31.32%); increased the performance of IRS2 (108.43%), Akt1/2/3 (93.18%) and GLUT4 (140.22%), and significant statistical differences (p<0.05) compared with the STZ group. In addition, compared with the TPA group, the reduction of ear edema was 26.9 % and 27.2 % respectively, after administration of high dose CPE (25.0 mg/mL) for 12 and 24 hours in the anti-inflammatory experiment of mice. In addition, compared with the TPA group, the reduction of ear edema was 26.9 % and 27.2 % respectively, after administration of high dose CPE ( 25.0 mg/mL ) for 12 and 24 hours in the anti-inflammatory experiment of mice, and the inhibitory effect is better than the positive control Medicine (Indomethacin). In the PTP1B inhibition test, the PTP1B content decreased with the higher dose. At the high dose of CPE (5.0 mg/mL), it has the lowest concentration (0.001 ± 0.08 nmol). It shows that the higher CPE concentration has the better inhibitory effect. Based on the above experimental results, CPE can improve the hyperglycemia of diabetic patients by regulating biochemical indicators and enhancing the transmission of insulin signals, and reduce the insulin resistance of patients by anti-inflammatory reaction. In addition, it can enhance insulin signal transmission by inhibiting the action of PTP1B. CPE can regulate blood sugar in many ways, which is beneficial to the recovery of diabetes.
摘 要 ................................................... I
Abstract .............................................. III
誌謝 .................................................... V
目 錄 .................................................. VI
圖 次 目 錄 ............................................. IX
縮 寫 表 ................................................ X
第壹章 緒言 ............................................. 1
實驗架構 ................................................ 2
第貳章 文獻回顧 .......................................... 3
(一) 青錢柳簡介及藥理活性 ................................. 3
(二) 糖尿病簡介 .......................................... 7
(三) 發炎簡介 ........................................... 13
第參章 材料與方法......................................... 18
(一) 實驗相關儀器及藥品 .................................. 18
(二) 材料製備 ........................................... 22
(三) RIN-m5F細胞增生率試驗方法 ........................... 25
(四) CPE調節小鼠血糖試驗方法 ............................. 27
(五) CPE對TPA誘導小鼠耳朵腫脹試驗方法 ..................... 30
(六) PTP1B抑制試驗方法 ................................... 31
(七) 統計分析 ........................................... 31
第肆章 結果 ............................................. 32
(一) CPE對大鼠胰臟RIN-m5F細胞增生率試驗之結果 .............. 32
(二) CPE調節小鼠血糖試驗之每週體重、攝食量及攝水量結果 ....... 38
(三) CPE調節小鼠血糖試驗之生化檢測結果 ..................... 43
(四) CPE調節小鼠血糖試驗之機轉分析結果 ..................... 51
(五) CPE對TPA誘導小鼠耳朵腫脹試驗方法結果 .................. 57
(六) CPE對PTP1B之抑制實驗結果 ............................. 60
第伍章 討論 .............................................. 62
第陸章 結論 .............................................. 66
參考文獻 ................................................ 67
中國科學院植物研究所(1979)。中國植物志。科學出版社。第21卷19頁。
陳明德(2000)。第四型葡萄糖輸送器。台灣醫學, 4(4), 431-433。
林傳旺(2011)。紅麴發酵酒粕產物之抗氧化效果及抑制糖尿病腎病變之評估。(碩士), 大仁科技大學, 屏東縣。
邱宜昕(2007)。胰島素對基因缺陷及高脂飼料餵食小鼠Akt活性之影響。(碩士), 國立中興大學, 台中市。
郭桂伶(2007)。葡萄糖轉運蛋白-1(GLUT1)中分子運輸途徑的預測研究。(碩士), 國立臺灣大學, 台北市。
曾千容(2005)。台灣栽培數種山藥之降血糖活性研究。(碩士), 高雄醫學大學, 高雄市。
葉青華(2005)。TPA誘發之人類子宮頸癌上皮SiHa細胞的分化與凋亡。(碩士), 國防醫學院, 台北市。
蔡幸儒(2016)。金銀花水萃取物抗發炎作用及促進人類大腸癌HT-29細胞凋亡之研究。(碩士), 大仁科技大學, 屏東縣。
蔡儒安(2019)。牛蒡複方調節老鼠血糖之研究。(碩士), 大仁科技大學, 屏東縣。
賴慶紓(2010)。多甲氧基類黃酮之癌症化學預防功效: 抑制發炎反應與腫瘤形成。成功大學環境醫學研究所學位論文, 1-182。
American Diabetes Association. (2004). Gestational diabetes mellitus. Diabetes care, 27(suppl 1), s88-s90.
Basak, S., Kim, H., Kearns, J. D., Tergaonkar, V., O'Dea, E., Werner, S. L., ... & Hoffmann, A. (2007). A fourth IκB protein within the NF-κB signaling module. Cell, 128(2), 369-381.
Benson, T. W., Weintraub, D. S., Crowe, M., Yiew, N. K., Popoola, O., Pillai, A., ... & Mintz, J. (2018). Deletion of the Duffy antigen receptor for chemokines (DARC) promotes insulin resistance and adipose tissue inflammation during high fat feeding. Molecular and cellular endocrinology, 473, 79-88.
Boles, A., Kandimalla, R., & Reddy, P. H. (2017). Dynamics of diabetes and obesity: epidemiological perspective. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863(5), 1026-1036.
Brasier, A. R. (2006). The NF-κB regulatory network. Cardiovascular toxicology, 6(2), 111-130.
Chen, L., Chen, R., Wang, H., & Liang, F. (2015). (Review Article) Mechanisms linking inflammation to insulin resistance. International journal of endocrinology, 2015, 1-9.
Cho, H. (2013). Protein tyrosine phosphatase 1B (PTP1B) and obesity. In Vitamins & Hormone, 91, 405-424.
Copps, K. D., & White, M. F. (2012). Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 55(10), 2565-2582.
Deng, B., Li, Y., Xu, D., Ye, Q., & Liu, G. (2019). Nitrogen availability alters flavonoid accumulation in Cyclocarya paliurus via the effects on the internal carbon/nitrogen balance. Scientific reports, 9(1), 2370.
Deng, L., Lei, J., He, J., Liu, J., Wang, L., Zhang, R. & Liu, Y. (2014). (Research Article) Evaluation on genotoxicity and teratogenicity of aqueous extract from Cyclocarya paliurus leaves. The Scientific World Journal, 2014, 1-12.
Fougerat, A., Pan, X., Smutova, V., Heveker, N., Cairo, C. W., Issad, T., ... & Pshezhetsky, A. V. (2018). Neuraminidase 1 activates insulin receptor and reverses insulin resistance in obese mice. Molecular metabolism, 12, 76-88.
Garofalo, R. S., Orena, S. J., Rafidi, K., Torchia, A. J., Stock, J. L., Hildebrandt, A. L. & McNeish, J. D. (2003). Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKBβ. The Journal of clinical investigation, 112(2), 197-208.
Gilmore, T. D. (2006). Introduction to NF-κB: players, pathways, perspectives. Oncogene, 25(51), 6680.
Huang, M. Q., Shangguan, X. C., Xu, M. S., Wang, W. J., Shen, Y. G., Jiang, Y. & Chen, T. T. (2011). Studies on hypolipemic effect of Cyclocarya paliurus (Batal) Iljinskaja polysaccharide. Acta Agric. Univ. Jiangxiensis, 33, 157-161.
Hvid, H., Teige, I., Kvist, P. H., Svensson, L., & Kemp, K. (2008). TPA induction leads to a Th17-like response in transgenic K14/VEGF mice: a novel in vivo screening model of psoriasis. International immunology, 20(8), 1097-1106.
Kurihara, H., Fukami, H., Kusumoto, A., Toyoda, Y., Shibata, H., Matsui, Y. & Tanaka, T. (2003). Hypoglycemic action of Cyclocarya paliurus (Batal.) Iljinskaja in normal and diabetic mice. Bioscience, biotechnology, and biochemistry, 67(4), 877-880.
Li, C., & Zhang, B. B. (2007). Insulin signaling and action: glucose, lipids, protein. In Endotext [Internet]: MDText. com, Inc.
Li, J., Luo, M., Hu, M., Guo, A. Y., Yang, X., Zhang, Q., & Zhu, Y. (2018). Investigating the molecular mechanism of aqueous extract of Cyclocarya paliurus on ameliorating diabetes by transcriptome profiling. Frontiers in Pharmacology, 9, 912.
Li, J., Zhang, Q., Zeng, W., Wu, Y., Luo, M., Zhu, Y. & Yang, X. (2018). Integrating Transcriptome and Experiments Reveals the Anti-diabetic Mechanism of Cyclocarya paliurus Formula. Molecular Therapy-Nucleic Acids, 13, 419-430.
Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduction And Targeted Therapy, 2, 17023.
Liu, Y., Chen, P., Zhou, M., Wang, T., Fang, S., Shang, X., & Fu, X. (2018). Geographic Variation in the Chemical Composition and Antioxidant Properties of Phenolic Compounds from Cyclocarya paliurus (Batal) Iljinskaja Leaves. Molecules (Basel, Switzerland), 23(10), 2440.
Lu, M. X., Yang, Y., Zou, Q. P., Luo, J., Zhang, B. B., Liu, X. Q., & Hwang, E. H. (2018). Anti-diabetic effects of Acankoreagenin from the leaves of Acanthopanax gracilistylus herb in RIN-m5F cells via suppression of NF-κB activation. Molecules, 23(4), 958.
Majithia, V., & Geraci, S. A. (2007). Rheumatoid arthritis: diagnosis and management. The American journal of medicine, 120(11), 936-939.
Miller, S. B. (2006, August). Prostaglandins in health and disease: an overview. In Seminars in arthritis and rheumatism, 36(1), 37-49.
Nagao, M., Asai, A., Sugihara, H., & Oikawa, S. (2015). Fat intake and the development of type 2 diabetes. Endocrine journal, 15-55.
Nieto-Vazquez, I., Fernández-Veledo, S., Krämer, D. K., Vila-Bedmar, R., Garcia-Guerra, L., & Lorenzo, M. (2008). Insulin resistance associated to obesity: the link TNF-alpha. Archives of physiology and biochemistry, 114(3), 183-194.
Ogawa, Y., & Calhoun, W. J. (2006). The role of leukotrienes in airway inflammation. Journal of Allergy and Clinical Immunology, 118(4), 789-798.
Oh, S., Ahn, H., Park, H., Lee, J. I., Park, K. Y., Hwang, D. & Byun, K. (2019). The attenuating effects of pyridoxamine on adipocyte hypertrophy and inflammation differ by adipocyte location. The Journal of Nutritional Biochemistry. Available online 24 April 2019.
Passos, G. F., Medeiros, R., Marcon, R., Nascimento, A. F., Calixto, J. B., & Pianowski, L. F. (2013). The role of PKC/ERK1/2 signaling in the anti-inflammatory effect of tetracyclic triterpene euphol on TPA-induced skin inflammation in mice. European journal of pharmacology, 698(3), 413-420.
Sacher, R. A., McPherson, R. A., Campos, J. M., & Widmann, F. K. (2000). Widmann's clinical interpretation of laboratory tests. FA Davis.
Shlomai, G., Neel, B., LeRoith, D., & Gallagher, E. J. (2016). Type 2 diabetes mellitus and cancer: the role of pharmacotherapy. Journal of Clinical Oncology, 34(35), 42-61.
Todd, J. C., Sanford, A. H., Davidsohn, I., & Henry, J. B. (1979). Clinical diagnosis and management by laboratory methods. Saunders.
Wang, H., Sun, X., Zhang, N., Ji, Z., Ma, Z., Fu, Q. & Ma, S. (2017). Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway. Physiology & behavior, 182, 93-100.
Wang, Q., Jiang, C., Fang, S., Wang, J., Ji, Y., Shang, X. & Zhang, J. (2013). Antihyperglycemic, antihyperlipidemic and antioxidant effects of ethanol and aqueous extracts of Cyclocarya paliurus leaves in type 2 diabetic rats. Journal of ethnopharmacology, 150(3), 1119-1127.
Wang, X., Li, W., & Kong, D. (2016). Cyclocarya paliurus extract alleviates diabetic nephropathy by inhibiting oxidative stress and aldose reductase. Renal failure, 38(5), 678-685.
Wang, Z., Xie, J., Yang, Y., Zhang, F., Wang, S., Wu, T. & Xie, M. (2017). Sulfated Cyclocarya paliurus polysaccharides markedly attenuates inflammation and oxidative damage in lipopolysaccharide-treated macrophage cells and mice. Scientific reports, 7, 40-42.
Wu, Z., Gao, T., Zhong, R., Lin, Z., Jiang, C., Ouyang, S. & Yin, Z. (2017). Antihyperlipidaemic effect of triterpenic acid-enriched fraction from Cyclocarya paliurus leaves in hyperlipidaemic rats. Pharmaceutical biology, 55(1), 712-721.
Xiao, H. T., Wen, B., Ning, Z. W., Zhai, L. X., Liao, C. H., Lin, C. Y. & Bian, Z. X. (2017). Cyclocarya paliurus tea leaves enhances pancreatic β cell preservation through inhibition of apoptosis. Scientific reports, 7(1), 1-13.
Xie, J. H., Dong, C. J., Nie, S. P., Li, F., Wang, Z. J., Shen, M. Y., & Xie, M. Y. (2015). Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food chemistry, 186, 97-105.
Xie, J., Wang, W., Dong, C., Huang, L., Wang, H., Li, C. & Xie, M. (2018). Protective effect of flavonoids from Cyclocarya paliurus leaves against carbon tetrachloride-induced acute liver injury in mice. Food and chemical toxicology, 119, 392-399.
Xu, G., Yoshitomi, H., Sun, W., Guo, X., Wu, L., Guo, X. & Gao, M. (2017). Cyclocarya paliurus (Batal.) Ijinskaja aqueous extract (CPAE) ameliorates obesity by improving insulin signaling in the hypothalamus of a metabolic syndrome rat model. Evidence-Based Complementary and Alternative Medicine, 2017, 1-9.
Yang, Z. W., Ouyang, K. H., Zhao, J., Chen, H., Xiong, L., & Wang, W. J. (2016). Structural characterization and hypolipidemic effect of Cyclocarya paliurus polysaccharide in rat. International journal of biological macromolecules, 91, 1073-1080.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊