|
(1)Annabi, N.; Nichol, J. W.; Zhong, X.; Ji, C.; Koshy, S.; Khademhosseini, A.; Dehghani, F., “Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering,” Tissue Eng Part B Rev 2010, 16, 371–383. (2)Anderson, N. S.; Campbell, J. W.; Harding, M. M., “X-Ray Diffraction Studies of Polysaccharide Sulphates: Double Helix Models for κ-and ι-Carrageenans,” J. Mol. Biol. 1969. (3)Arnott, S.; Fulmer, A.; Scott, W. E.; Dea, I. C.; Moorhouse, R.; Rees, D. A., “The Agarose Double Helix and Its Function in Agarose Gel Structure,” J. Mol. Biol. 1974, 90, 269–284. (4)Djabourov, M.; Clark, A. H.; Rowlands, D. W.; Ross-Murphy, S. B., “Small-Angle X-Ray Scattering Characterization of Agarose Sols and Gels,” Macromolecules 1989, 22, 180–188. (5)Foord, S. A.; Atkins, E. D. Y., “New X-Ray Diffraction Results From Agarose: Extended Single Helix Structures and Implications for Gelation Mechanism,” Biopolymers 1989, 28, 1345–1365. (6)Guenet, J.-M.; Brulet, A.; Rochas, C., “Agarose Chain Conformation in the Sol State by Neutron Scattering,” Int. J. Bio. Macromol. 1993, 15, 131–132. (7)Itagaki, H.; Fukiishi, H.; Imai, T.; Watase, M., “Molecular Structure of Agarose Chains in Thermoreversible Hydrogels Revealed by Means of a Fluorescent Probe Technique,” J. Polym. Sci. B: Polym. Phys. 2005, 43, 680–688. (8)Serwer, P., “Agarose Gels: Properties and Use for Electrophoresis,” Electrophoresis 1983, 4, 375–382. (9)Guenet, J. M. Polymer-Solvent Molecular Compounds; Elsevier Science: New York, 2008. (10)Feke, G. T.; Prins, W., “Spinodal Phase Separation in a Macromolecular Sol → Gel Transition,” Macromolecules 1974, 7, 527–530. (11)Biagio, P. L. S.; Bulone, D.; Emanuele, A.; Palma-Vittorelli, M. B.; Palma, M. U., “Spontaneous Symmetry-Breaking Pathways: Time-Resolved Study of Agarose Gelation,” Food Hydrocolloid 1996, 10, 91–97. (12)Manno, M.; Palma, M. U., “Fractal Morphogenesis and Interacting Processes in Gelation,” Phys. Rev. Lett. 1997, 79, 4286–4289. (13)Coniglio, A.; Stanley, H. E.; Klein, W., “Site-Bond Correlated-Percolation Problem: A Statistical Mechanical Model of Polymer Gelation,” Phys. Rev. Lett. 1979, 42, 518–522. (14)Xiong, J.-Y.; Narayanan, J.; Liu, X.-Y.; Chong, T. K.; Chen, S. B.; Chung, T.-S., “Topology Evolution and Gelation Mechanism of Agarose Gel,” J. Phys. Chem. B 2005, 109, 5638–5643. (15)Takeshita, H.; Kanaya, T.; Nishida, K.; Kaji, K., “Spinodal Decomposition and Syneresis of PVA Gel,” Macromolecules 2001, 34, 7894–7898. (16)Takeshita, H.; Kanaya, T.; Nishida, K.; Kaji, K., “Gelation Process and Phase Separation of PVA Solutions As Studied by a Light Scattering Technique,” Macromolecules 1999, 32, 7815–7819. (17)Kanaya, T.; Takahashi, N.; Takeshita, H.; Ohkura, M.; Nishida, K.; Kaji, K., “Structure and Dynamics of Poly(Vinyl Alcohol) Gels in Mixtures of Dimethyl Sulfoxide and Water,” Polym. J. 2011, 44, 83–94. (18)Chou, C.-M.; Hong, P.-D., “Scattering Modeling of Nucleation Gels,” Macromolecules 2008, 41, 6540–6545. (19)Chou, C.-M.; Hong, P.-D., “Spatiotemporal Evolution in Morphogenesis of Thermoreversible Polymer Gels with Fibrillar Network,” Macromolecules 2010, 43, 10621–10627. (20)Chou, C.-M.; Hong, P.-D., “Morphogenetic Transition in Weak Gelation of Crystallizable Linear Polymers,” ACS Macro Lett. 2012, 1, 646–650. (21)Debye, P.; Bueche, A. M., “Scattering by an Inhomogeneous Solid,” J. Appl. Phys. 1949, 20, 518–525. (22)Stein, R. S.; Rhodes, M. B., “Photographic Light Scattering by Polyethylene Films,” J. Appl. Phys. 1960, 31, 1873–1884. (23)Clough, S.; van Aartsen, J. J.; Stein, R. S., “Scattering of Light by Two-Dimensional Spherulites,” J. Appl. Phys. 1965, 36, 3072–3085. (24)Meeten, G. H.; Navard, P., “Small-Angle Polarized Light Scattering from Amorphous Spheres,” J. Polym. Sci. A-2 Polym. Phys. 1984, 22, 2159–2163. (25)Meeten, G. H.; Navard, P., “Small-Angle Scattering of Polarized Light. I. Comparison of Theoretical Predictions for Isotropic and Anisotropic Spheres,” J. Polym. Sci. B: Polym. Phys. 1989, 27, 2023–2035. (26)Van de Hulst, H. C. Light Scattering by Small Particles; Dover Publications: New York, 1981. (27)Bates, F. S.; Wiltzius, P., “Spinodal Decomposition of a Symmetric Critical Mixture of Deuterated and protonated Polymer,” J. Chem. Phys. 1989, 91, 3258-3274 (28)Moritani, M.; Hayashi, N.; Utsuo, A.; Kawai, H., “Light-Scattering Patterns From Collagen Films in Relation to the Texture of a Random Assembly of Anisotropic Rods in Three Dimensions,” Polym. J. 1971, 2, 74–87. (29)Murakami, Y.; Hayashi, N.; Hashimoto, T.; Kawai, H., “Light-Scattering Patterns from Random Assembly of Anisotropic Rod-like Structures with their Principal Optic Axes Oriented in Cylindrical Symmetry with Respect to their Own Rod Axes,” Polym. J. 1973, 4, 452–459. (30)Hashimoto, T.; Murakami, Y.; Hayashi, N.; Kawai, H., “Light Scattering from Polymer Films Having an Optically Anisotropic Rod-Like Texture in Relation to a Model of a Random Assembly of Disordered Rods,” Polym. J. 1974, 6, 132–150. (31)Chou, C.-M.; Hong, P.-D., “Light Scattering from Birefringent Sphere and Its Aggregation,” Macromolecules 2008, 41, 6147–6153. (32)Chou, C.-M.; Hong, P.-D., “Scattering Modeling of Nucleation Gels,” Macromolecules 2008, 41, 6540–6545. (33)Ferri, F.; Greco, M.; Arcovito, G.; Bassi, F.; De Spirito, M.; Paganini, E.; Rocco, M., “Growth Kinetics and Structure of Fibrin Gels,” Phys. Rev. E 2001, 63, 031401. (34)Ferri, F.; Greco, M.; Arcovito, G.; De Spirito, M.; Rocco, M., “Structure of Fibrin Gels Studied by Elastic Light Scattering Techniques: Dependence of Fractal Dimension, Gel Crossover Length, Fiber Diameter, and Fiber Density on Monomer Concentration,” Phys. Rev. E 2002, 66, 011913. (35)Raghavan, S. R., “Distinct Character of Surfactant Gels: A Smooth Progression from Micelles to Fibrillar Networks” Langmuir 2009, 25, 8382–8385. (36)Furukawa, H., “A Dynamic Scaling Assumption for Phase Separation” Adv. in Phys. 1985, 34, 703-750. (37)Barabasi, A. L., “Scale-Free Networks: a Decade and Beyond,” Science 2009, 325, 412–413. (38)Barabasi, A. L.; Bonabeau, E., “Scale-Free Networks,” Scientific American. August 12, 2003, pp. 50–59. (39)Semmrich, C.; Larsen, R. J.; Bausch, A. R., “Nonlinear Mechanics of Entangled F-Actin Solutions,” Soft Matter 2008, 4, 1675–1680.
|