|
1.Michael P. Hayes and Peter T. Gough, “Synthetic Aperture Sonar: A Review of Current Status,” IEEE Journal of Oceanic Engineering, vol. 34, pp. 207-224, 2009. 2.Leonard, John J., Durrant-Whyte, and Hugh F., Directed Sonar Sensing for Mobile Robot Navigation, Boston: Kluwer Academic Publishers, 1992. 3.Christopher G. Fox, Haruyoshi Matsumoto and Tai-Kwan Andy Lau, “Monitoring Pacific Ocean seismicity from an autonomous hydrophone array,” Journal of Geophysical Research, vol. 106, NO. B3, pp. 4183-4206, 2001. 4.H. S. Hung, S.H. Chang, and C.H. Wu, “Near-field source localization using MUSIC with polynomial rooting,” Journal of Marine Science & Tech., vol. 6, pp. 1-7, 1998. 5.R. O. Schmidt, “Multiple emitter location and signal parameter-estimation,” IEEE trans. Antennas Propagation, vol. 34, pp. 276-280, 1986. 6.Alon Amar and Anthony J. Weiss, “Localization of Narrowband Radio Emitters Based on Doppler Frequency Shifts,” IEEE Transactions on Signal Processing, vol. 56, pp. 5500-5508, 2008. 7.B. Boashash, Time frequency signal analysis and processing. Amsterdam: Academic Press, 2016. 8.X. Jin, I. Ladabaum, and B. T. Khuri-Yakub,“The microfabrication of capacitive ultrasonic transducers,”Journal of Microelectromechanical Systems, vol. 7, no. 3, pp. 295-302, 1998. 9.J. J. Bernstein, S. L. Finberg, K. Houston et al.,“Micromachined high frequency ferroelectric sonar transducers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 44, no. 5, pp. 960–969, 1997. 10.M. Sung, K. Shin, and W. Moon, “A micro-machined hydrophone employing a piezoelectric body combined on the gate of a field-effect transistor,” Sensors and Actuators, A: Physical, vol. 237, pp. 155–166, 2016. 11.C. Koch and W. Molkenstruck, “Primary calibration of hydrophones with extended frequency range 1 to 70MHZ using optical interferometry,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, no. 5, pp. 1303–1314, 1999. 12.C. H. Sherman, J. L. Butler, Transducers and Arrays for Underwater Sound, Springer, New York, 2007. 13.M. Asadnia, A.G.P. Kottapalli, Z. Shen, J. Miao, M. Triantafyllou, “Flexible and surface-mountable piezoelectric sensor arrays for underwater sensing in marine vehicles”, IEEE Sen. J., vol.13, no. 10, pp. 3918-3925, 2013. 14.M. Lasky, D. Richard Doolittle, B.D. Simmons, S.G. Lemon, “Recent progress in towed hydrophone array research,” IEEE J. Oceanic Eng., vol. 29, no. 2, pp. 374-387, 2004. 15.F. F. C. Duval, R. A. Dorey, R. W. Wright, Z. Huang, R. W. Whatmore, “Fabrication and Modeling of High-Frequency PZT Composite Thick Film Membrane Resonators,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, no. 10, pp.1255-1261, 2004. 16.S. Meti, K. B. Balavald, and B. G. Sheeparmatti, “MEMS Piezoresistive Pressure Sensor: A Survey,” Int. J. Engr. Res. Appl., vol. 6, issue 4, part 1, pp.23-31, 2016. 17.Y. Qiu, J. V. Gigliotti, M. Wallace, F. Griggio, C. E. M. Demore, S. Cochran, and S. Trolier-McKinstry, “Piezoelectric Micromachined Ultrasound Transducer (pMUT) Arrays for Integrated Sensing, Actuation and Imaging,” Sensors, vol. 15, pp. 8020-8041, 2015. 18.A. Safari, E. K. Akdogan, Piezoelectric and Acoustic Materials for Transducer Applications, New York: Springer, 2008. 19.O. C. Zienkiewicz, Y. K. K. Cheung, The finite Element Method in Structural and Continuum Mechanics, London: McGraw-Hill, 1976. 20.T. E. Tuncer and Benjamin Friedlander, Classical and Modern Direction-of-Arrival Estimation, 1st ed. USA: Academic Press 2009, pp. 9-24. 21.F. Gao and A.B. Gershman, “A Generalized ESPRIT Approach to Direction-of-Arrival Estimation,” IEEE Signal Processing Lett., vol. 12, no. 3, pp. 254-257, 2005. 22.P. Welch, "The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms,” IEEE Trans. Audio & electroacoustic, vol. 15, pp. 70-73 1967. 23.A. Crespi, R. Osellame, R. Ramponi, M. Bentivegna, F. Flamini, N. Spagnolo, N. Viggianiello, L. Innocenti, P. Mataloni, and F. Sciarrino, “Suppression law of quantum states in a 3D photonic fast Fourier transform chip,” Nature Communications, vol. 7, p. 10469, 2016. 24.X. Chen and J. Guan, “Maneuvering target detection via radon-fractional fourier transform-based long-time coherent integration,” IEEE transactions on signal proc., vol. 62, no. 4, pp. 939-953, 2014. 25.Stephane Mallat, A Wavelet Tour of Signal Processing, 2nd ed. USA: Academic Press, 1999, pp. 11-14. 26.L. Cohen, Time-Frequency Analysis: Theory and Application. New York: Prentice Ha11, 1995, pp. 70-135. 27.N. E. Huang, Z. Shen, and S.R. Long, “A new view of nonlinear water waves: the Hilbert spectrum,” Annu. Rev. of Fluid Mech., vol. 31, pp. 417-457, 1999. 28.H. S. Hung, S.H. Chang, and C.H. Wu, “Near-field source localization using MUSIC with polynomial rooting,” Journal of Marine Science & Tech., vol. 6, pp. 1-7, 1998. 29.R. O. Schmidt, “Multiple emitter location and signal parameter-estimation,” IEEE trans. Antennas Propagation, vol. 34, pp. 276-280, 1986. 30.S. Nawab, T. Quatieri, and Jae Lim, “Signal reconstruction from short-time Fourier transform magnitude,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 31, iss. 4, 1983. 31.B. Boashash, and P. O'Shea, “Use of the cross Wigner-Ville distribution for estimation of instantaneous frequency,” IEEE Transactions on Signal Processing, vol. 41, pp. 1439-1445, 1993. 32.N. E. Huang, Z. Shen, S. Long, M. Wu, H. Shih, Q. Zheng, N. Yen, C. Tung and H. Liu, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 454, no. 1971, pp. 903-995, 1998. 33.N. E. Huang, Z. Shen and S. Long, " A new view of nonlinear water waves: The Hilbert Spectrum," Annual Review of Fluid Mechanics, vol. 31, no. 1, pp. 417-457, 1999. 34.Ranjit A. Thuraisingham, “Estimation of Teager energy using the Hilbert–Huang transform,” IET Signal Processing. 2015, 9, 82-87. 35.S. Tang, Z. Li, and L. Chen, “Fault detection in analog and mixed-signal circuits by using Hilbert–Huang transform and coherence analysis,” Microelectronics Journal, 2015, 46, 893–899. 36.H. Bleckmann, Reception of Hydrodynamic Stimuli in Aquatic and Semi-Aquatic Animals, NY, USA: Springer-Verlag, 1994. 37.Ivan A. Parinov, Piezoelectrics and Related Material: Investigations and Applications. New York: Nova Science Publishers, 2012. 38.X. Lurton, An introduction to underwater acoustics: Principles and applications. Germany: Springer Press, 2001, pp. 1-347. 39.Tolstoy Ivan, Ocean acoustics: Theory and experiment in underwater Sound. USA: McGraw-Hill, 1966. 40.Paul C. Etter, Underwater acoustic modeling and simulation. New York: Spon Press, 2003. 41.Keller, J. B. Survey of Wave Propagation and Underwater Acoustics. In: Wave Propagation and Underwater Acoustics, Lecture Notes in Physics, Springer-Verlag. 1977, vol. 70. pp. 1 – 294. 42.P. Acevedo, I. S. Domínguez, “Simulation of an ultrasonic transducer for medical applications using the finite element method,” J. Materials Sci. and Eng. B, vol. 5, no. 7-8, pp.293-297, 2015. 43.Z. Li, A. Huang, G. Luan, and J. Zhang, “Finite element analyzing of underwater receiving sensitivity of PMN-0.33PT single crystal cymbal hydrophone,” Ultrasonics, vol. 44, pp. 759-762, 2006. 44.M. S. Martins, V. Correia, S. Lanceros-Mendez, and J. G. Rocha, “Optimization of piezoelectric ultrasound emitter transducers for underwater communications,” Sensors Actuators A Phys., vol. 184, pp. 141-148, Sep. 2012. 45.G. McRobbie, P. M. Franch, and S. Cochrane, “Beam characteristics of ultrasonic transducers for underwater marine use,” In: Proc. of the COMSOL Users Conference, Birmingham, United Kingdom, pp. 1-7, 2006. 46.M. Oxborrow, K. Benmessai, S. Grop, and V. Giordano, “G-Sensitivity of a cryogenic sapphire resonator,” In: Proc. of the European Frequency and Time Forum Besançon, France, pp. 1-8, 2005. 47.A. Iula, F. Vazquez, M. Pappalardo, and J. A. Gallego, “Finite element three-dimensional analysis of the vibrational behaviour of the Langevin-type transducer,” Ultrasonics, vol. 40, no. 1-8, pp. 513-517, 2002. 48.Li, F.; Fang, D.; Lee, J.-J.; Kim, H. C. Science in China: Series E Technological Sciences. 49.Xin, L. F.; Ning, F. D.; Xue, F. Chin. Phys. Lett. 2003, vol. 20(12), 2250 – 2253.62 50.I. Tolstoy, C. S. Clay, Ocean acoustics: Theory and experiment in underwater sound. McGraw-Hill, 1966. 51.F. Duval, R. Dorey, R. Wright, Z. Huang and R. Whatmore, "Fabrication and modeling of high-frequency PZT composite thick film membrance resonators," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 51, no. 10, pp. 1255-1261, 2004. 52.J. C. Liu, Y.T. Cheng, S.Y. Ho, H.S. Hung, and S.H. Chang, “Fabrication and characterization of high-sensitivity underwater acoustic multimedia communication devices with thick composite PZT films,” Journal of Sensors, vol. 7326919, pp. 1-7, 2017. 53.Jeng-Cheng Liu, Yuang-Tung Cheng, and Hsien-Sen Hung, “Joint Bearing and Range Estimation of Multiple Objects from Time-Frequency Analysis,” Sensors, vol. 291, pp. 1-14, 2018. 54.W. P. Mason, Electromechanical Transducers and Wave Filters, New York, D. Van Nostrand Co., 1948. 55.A. Bozkurt, I. Ladabaum, A. Atalar, B. T. Khuri-Yakub,“Theory and analysis of electrode size optimization for capacitive microfabricated ultrasonic transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 46, no. 6, pp. 1364-1374, 1999. 56.F. V. Hunt, Electroacoustics: The Analysis of Transduction, and Its Historical Background, Harvard University Press, Cambridge, Massachusetts, 1954, Chapter 6, pp. 168-212. 57.D. T. Blackstock, Fundamentals of Physical Acoustics. New York: Wiley Interscience Publication, 2000. 58.B. D. Cook, J. R. Laflin, C. F. Gaumond, H. D. Dardy, “Alternative procedures for acquiring acousto‐optic data for computerized tomographic evaluation of sound fields,” J. Acoust. Soc. Am., vol.68, S94, 1980. 59.L. Lin, H. C. Chu, Y. W. Lu, “A Simulation Program for the Sensitivity and Linearity of Piezoresistive Pressure Sensors,” IEEE J. Microelectromech. Syst., vol. 8, no. 4, pp. 514-522, 1999. 60.J. C. Erskine, “Polycrystalline Silicon-on-Metal Strain gauge Transducer,” IEEE Tran. Electro. Dev., vol. ED-30, no. 7, 1989. 61.S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd Ed. New York: McGraw-Hill, 1970. 62.M. Goto, Y. Iguchi, K. Ono, A. Ando, F. Takeshi, S. Matsunaga, Y. Yasuno, K. Tanioka, T. Tajima, “High-Performance Condenser Microphone With Single-Crystalline Silicon Diaphragm and Backplate,” IEEE Sensors J., vol. 7, no. 1, pp. 4-10, 2007. 63.M. Pedersen, W. Olthuis, P. Bergveld, “High-Performance Condenser Microphone with Fully Integrated CMOS Amplifier and DC–DC Voltage Converter,” IEEE J. Microelectromech. Syst., vol. 7, no. 4, pp. 387-394, 1998. 64.L. E. Kinsler, A. R. Frey, A. B. Coppens, J. V. Sanders, Fundamentals of Acoustics, 4th Ed. Wiley, New York, 2009. 65.I. V. Zhilyaev, M. S. Shevtsova, I. A. Parinov, V. A. Akopyan, C.-C. Yang, S. H. Chang, J. K. Wu, K.C. Hou, P. C. Wu, and Y.T. Cheng, “Finite-Element Based Comparative Investigation of Sandwich Design and Membrane-Type PZT Hydrophones with Perforated Damping Back-plate for Underwater Applications,” Materials Science and Technologies. E-book, 2012; pp. 79-113. 66.S.-H. Chang, J.-C. Liu, J.-K. Wu, S. Shevtsov, I. Zhilyaev, and M. Shevtsova, “Two-steps Pareto-based Optimization of Broadband pMUT Hydrophone”, in Proc. of the 2014 International Symposium on Physics and Mechanics of New Materials and Underwater Applications, March 27-29, 2014, Khon Kaen, Thailand [Online]. Available: http: ://phenma2014.math.sfedu.ru 67.Mehrdad Soumekh, Fourier Array Imaging, New Jersey: Prentice-Hall, Englewood Cliffs, 1994. 68.S. Qian and D. Chen, Joint Time-Frequency Analysis Methods and Applications, New Jersey: Prentice-Hall, 1996. 69.P. Daponte, G. Fazio, and A Molinaro, “Detection of echoes using time-frequency analysis techniques, ” IEEE Trans. on Instru. and Measure., vol. 45, no. 1, 1996. 70.A. M. Sayeed and D. L. Jones, “Optimal quadratic detection and estimation using generalized joint signal representations,” IEEE Trans Signal Proc., vol. 44, no. 12, 1996. 71.Z. Zhao and C. Liu, “Joint estimation of time-frequency signature and DOA based on STFD for multicomponent chirp signals,” International Scholarly Research Notices, vol. 2014, article ID 937139, pp. 1-6, 2014. 72.J. Chen, J. Li, P. Li, Y. Zhu, and W. Long, “Joint DOD and DOA estimation for high speed target using bistatic MIMO radar,” International Journal of Antennas and Propagation, vol. 2014, article ID 914327, pp.1-10, 201. 73.Robert V. Hogg and Elliot A. Tanis, Probability and Statistical Inference. New York: Macmillan, 1977.
|